
Introduction to Computer Science

William Hsu
Advanced Computation Laboratory
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University



Chapter 8:  Data Abstractions
LIFO (Last In, First Out)  Also called a "stack".
FIFO (First In, First Out)  Also called a "queue".
FISH (First In, Still Here)  Also called a "hung printer".
FIGL (First In, Got Lost)  Also called a bureaucracy.
LIGL (Last In, Got Lost)  Also called a "streams module".
FIGO (First In, Garbage Out)  Also called a "random number generator".
GHNW (Got Here, Now What?)  Also called a "longjmp botch".



› 8.1 Basic Data Structures

› 8.2 Related Concepts

› 8.3 Implementing Data Structures

› 8.4 A Short Case Study

› 8.5 Customized Data Types

› 8.6 Classes and Objects

› 8.7 Pointers in Machine Language



› Arrays

› Aggregates

› List
– Stack
– Queue

› Tree

Basic Data Structures



Lists, Stacks, and Queues

2014/8/29 5



› Array: A block of data whose entries are of same type.

› A two dimensional array consists for rows and columns.

› Indices are used to identify positions.

Terminology for Arrays

2014/8/29 6



› Aggregate: A block of data items that might be of 
different type or sizes.

› Each data item is called a field.

› Fields are usually accessed by name.

Terminology for Aggregates

2014/8/29 7



› List: A collection of data whose entries are arranged 
sequentially.

› Head: The beginning of the list.

› Tail: The end of the list.

Terminology for Lists

2014/8/29 8



› Stack: A list in which entries are removed and inserted 
only at the head.

› LIFO: Last-in-first-out.

› Top: The head of list (stack).

› Bottom or base: The tail of list (stack).

› Pop: To remove the entry at the top.

› Push: To insert an entry at the top.

Terminology for Stacks

2014/8/29 9



› Queue: A list in which entries are removed at the head 
and are inserted at the tail.

› FIFO: First-in-first-out.

Terminology for Queues

2014/8/29 10



An Example of an Organization Chart

2014/8/29 11



› Tree: A collection of data whose entries have a 
hierarchical organization.

› Node: An entry in a tree.
› Root node: The node at the top.
› Terminal or leaf node: A node at the bottom.
› Parent: The node immediately above a specified node
› Child: A node immediately below a specified node
› Ancestor: Parent, parent of parent, etc.
› Descendent: Child, child of child, etc.
› Siblings: Nodes sharing a common parent.

Terminology for a Tree

2014/8/29 12



Tree Anatomy

13

R

S

Y Z

X

T

U V W

Root

Internal Node

Leaf

Subtree

Level 0

Level 1

Level 2

Level 3

Child of X

Parent of Z and Y

The children of a node are, themselves, trees, called subtrees.



› Binary tree: A tree in which every node has at most two 
children.

› Depth: The number of nodes in longest path from root 
to leaf.

Terminology for a Tree (continued)

2014/8/29 14



Tree Terminology

2014/8/29 15



› Abstraction
– Shield users (application software) from details of actual data 

storage.

› Static vs. Dynamic Structure
– Does the shape and size change over time?

› Pointer
– A storage area that encodes an address where data is stored
– Later used to access the data.

Related Concepts

2014/8/29 16



Novels Arranged by Title but Linked 
According to Authorship

2014/8/29 17



› Memory address of a particular cell can be computed.

› Row-major order versus column major order.

› Address polynomial.

Storing Arrays

2014/8/29 18



The Array of Temperature Readings Stored 
in Memory Starting at Address x

2014/8/29 19



A Two-dimensional Array with Four Rows and 
Five Columns Stored in Row Major Order

2014/8/29 20



› Fields can be stored one after the other in a contiguous 
block:
– Memory cell address of each field can be computed.

› Fields can be stored in separate locations identified by 
pointers.

Storing Aggregates

2014/8/29 21



Storing the Aggregate Type Employee

2014/8/29 22



› Contiguous list: List in which entries are stored in an 
array.

› Linked list: List in which entries are linked by pointers.
– Head pointer: Pointer to first entry in list.
– null: A “non-pointer” value used to indicate end of list .

Storing Lists

2014/8/29 23



Names Stored in Memory as a Contiguous 
List

2014/8/29 24



The Structure of a Linked List

2014/8/29 25



Deleting an Entry From a Linked List

2014/8/29 26



Inserting an Entry Into a Linked List

2014/8/29 27



› Stacks usually stored as contiguous lists.

› Queues usually stored as Circular Queues
– Stored in a contiguous block in which the first entry is 

considered to follow the last entry.
– Prevents a queue from crawling out of its allotted storage space.

Storing Stacks and Queues

2014/8/29 28



A Stack in Memory

2014/8/29 29



A Queue Implementation with Head and 
Tail Pointers

2014/8/29 30



A Circular Queue Containing the Letters P
Through V

2014/8/29 31



› Linked structure.
– Each node = data cells + two child pointers.
– Accessed via a pointer to root node.

› Contiguous array structure.
– A[1] = root node.
– A[2],A[3] = children of A[1].

› A[4],A[5] = children of A[2] .
› A[6],A[7] = children of A[3] .

Storing Binary Trees

2014/8/29 32



The Structure of a Node in a Binary Tree

2014/8/29 33



The Conceptual and Actual Organization of a 
Binary Tree Using a Linked Storage System

2014/8/29 34



A Tree Stored Without Pointers

2014/8/29 35



A Sparse, Unbalanced Tree Shown in its 
Conceptual Form and as it Would be Stored 
Without Pointers

2014/8/29 36



› Ideally, a data structure should be manipulated solely by 
pre-defined functions.
– Example:  A list typically has a function insert for inserting 

new entries.
– The data structure along with these functions constitutes a 

complete abstract tool.

Manipulating Data Structures

2014/8/29 37



def PrintList (List):

CurrentPointer = List.Head

while (CurrentPointer is not None):

print(CurrentPointer.Value)

CurrentPointer = CurrentPointer.Next

A Function for Printing a Linked List

2014/8/29 38



Problem: 

Construct an abstract tool consisting of a list of names 
in alphabetical order along with the operations: search, 
print, and insert.

Case Study

2014/8/29 39



The Letters A Through MArranged in an 
Ordered Tree

2014/8/29 40



def Search (Tree, TargetValue):

if (Tree is None):

return None       # Search failed

elif (TargetValue == Tree.Value):

return Tree # Search succeeded

elif (TargetValue < Tree.Value):

# Continue search in left subtree

return Search(Tree.Left, TargetValue)

elif (TargetValue > Tree.Value):

# Continue search in right subtree

return Search(Tree.Right, TargetValue)

The Binary Search as it Would Appear if the 
List were Implemented as a Linked Binary Tree

2014/8/29 41



The Successively Smaller Trees Considered by 
the Function when Searching for the Letter J

2014/8/29 42



Printing a Search Tree in Alphabetical 
Order

2014/8/29 43



def PrintTree (Tree):

if (Tree is not None):

PrintTree(Tree.Left)

print(Tree.Value)

PrintTree(Tree.Right)

A Function for Printing the Data in a 
Binary Tree

2014/8/29 44



Inserting the Entry M into the List B, E, 
G, H, J, K, N, P Stored as a Tree

2014/8/29 45



def Insert(Tree, NewValue):

if (Tree is None):

# Create a new leaf with NewValue

Tree = TreeNode()

Tree.Value = NewValue

elif (NewValue < Tree.Value):

# Insert NewValue into the left subtree

Tree.Left = Insert(Tree.Left, NewValue)

elif (NewValue > Tree.Value):

# Insert NewValue into the right subtree

Tree.Right = Insert(Tree.Right, NewValue)

else:

# Make no change

return Tree

A Function for Inserting a New Entry in a 
List Stored as a Binary Tree

2014/8/29 46



47

Tree Traversals
› One of the most common operations performed on trees, 

are a tree traversals

› A traversal starts at the root of the tree and visits every 
node in the tree exactly once
– visit means to process the data in the node

› Traversals are either depth-first or breadth-first



Breadth First Traversals
› All the nodes in one level 

are visited

› Followed by the nodes 
the at next level

› Beginning at the root

› For the sample tree
– 7, 6, 10, 4, 8, 13, 3, 5

48

7

6

3 5

4

10

8 13



Breadth first tree traversal with a queue
› Enqueue root

› While queue is not empty
– Dequeue a vertex and write it to the output list
– Enqueue its children left-to-right

50



Breadth first tree traversal with a queue

51

Step Output Queue
0 α
1 α ε,δ
2 ε δ,ι,β
3 δ ι,β,κ,λ
4 ι β,κ,λ
5 β κ,λ,φ
6 κ λ,φ
7 λ φ
8 φ γ
9 γ ϕ,η
10 ϕ η,µ
11 η µ,χ
12 µ χ
13 χ

1

54

8

2 3

7

9

10 11

13

12

6

α

βι

φ

ε δ

λ

γ

ϕ η

χ

µ

κ



52

Depth-First Traversals
› There are 8 different depth-first traversals

– VLR (pre-order traversal)
– VRL
– LVR (in-order traversal)
– RVL
– RLV
– LRV (post-order traversal)



Pre-order Traversal: VLR
› Visit the node

› Do a pre-order traversal 
of the left subtree

› Finish with a pre-order 
traversal of the right 
subtree

› For the sample tree
– 7, 6, 4, 3, 5, 10, 8, 13

53

7

6

3 5

4

10

8 13



Pre-order tree traversal with a stack
› Push root onto the stack

› While stack is not empty
– Pop a vertex off stack, and write it to the output list
– Push its children right-to-left onto stack

54



Pre-order tree traversal with a stack

55

Step Output Stack
0 α
1 α δ,ε
2 ε δ,β,ι
3 ι δ,β
4 β δ,φ
5 φ δ,γ
6 γ δ,η,ϕ
7 ϕ δ,η,µ
8 µ δ,η,χ
9 χ δ,η
10 η δ
11 δ λ,κ
12 κ λ
13 λ

α

βι

φ

ε δ

λ

γ

ϕ η

χ

µ

κ

1

43

5

2 11

13

6

7 10

9

8

12



Example

56

A R EY PM HJ Q T

A

R

EY

P

M

HJ

Q T



Ordering of the preorder traversal is the same a the 
Universal Address System with lexicographic ordering.

57

A R EY PM HJ Q T

A

R

EY

P

M

HJ

Q T

0

1 2 3

1.1
2.1

2.2

2.2.1  2.2.2  2.2.3



In-order Traversal: LVR
› Do an in-order traversal 

of the left subtree

› Visit the node

› Finish with an in-order 
traversal of the right 
subtree

› For the sample tree
– 3, 4, 5, 6, 7, 8, 10, 13

58

7

6

3 5

4

10

8 13



Inorder Traversal

59

Step 1: Visit T1 in inorder

Step 2: Visit r

Step n+1: Visit Tn in inorder

Step 3: Visit T2 in inorder

r

T1 T2 Tn



Example

60

A R EY PM HJ Q T

A

R

EY

P

M

HJ

Q T



Post-order Traversal: LRV
› Do a post-order traversal 

of the left subtree

› Followed by a post-order 
traversal of the right 
subtree 

› Visit the node

› For the sample tree
– 3, 5, 4, 6, 8, 13, 10, 7

61

7

6

3 5

4

10

8 13



Postorder Traversal

62

Step 1: Visit T1 in postorder

Step 2: Visit T2 in postorder

Step n+1: Visit r
Step n: Visit Tn in postorder

r

T1 T2 Tn



63

Example

A R EYP MHJ Q T

A

R

EY

P

M

HJ

Q T



Representing Arithmetic Expressions
› Complicated arithmetic expressions can be represented 

by an ordered rooted tree
– Internal vertices represent operators
– Leaves represent operands

› Build the tree bottom-up
– Construct smaller subtrees
– Incorporate the smaller subtrees as part of larger subtrees

64



Example
› (x+y)2 + (x-3)/(y+2)

65

+

x y

2

↑

–

x 3

+

y 2

/
+



Infix Notation
› Traverse in inorder (LVR) adding parentheses for each 

operation

66

+
↑

– +

/

+ 2

x y x 3 y 2

x + y( ) ↑ 2( ) + x – 3( ) / y + 2( )( )( )



Prefix Notation
(Polish Notation)
› Traverse in preorder (VLR)

67

x+ y↑ 2+ x– 3/ y+ 2

+
↑

– +

/

+ 2

x y x 3 y 2



Evaluating Prefix Notation
› In an prefix expression, a binary operator precedes its two 

operands

› The expression is evaluated right-left

› Look for the first operator from the right

› Evaluate the operator with the two operands immediately 
to its right

68



Example

69

+   /   +   2   2   2   /   – 3   2   +   1   0

+   /   +   2   2   2   /   – 3   2   1

+   /   +   2   2   2   /   1   1

+   /   +   2   2   2   1

+   /   4   2   1

+   2   1

3



Postfix Notation
(Reverse Polish)
› Traverse in postorder (LRV)

70

x +y ↑2 +x –3 /y +2

+
↑

– +

/

+ 2

x y x 3 y 2



Evaluating Postfix Notation
› In an postfix expression, a binary operator follows its two 

operands

› The expression is evaluated left-right

› Look for the first operator from the left

› Evaluate the operator with the two operands immediately 
to its left

71



Example

72

3

2   2   +   2   /   3   2   – 1   0   +   /   +

4   2   /   3   2   – 1   0   +   /   +

2   3   2   – 1   0   +   /   +

2   1   1   0   +   /   +

2   1   1   /   +

2   1   +



› Use an aggregate structure to define new type, in C:
struct EmployeeType
{
char Name[25];
int Age;
real SkillRating;

}

› Use the new type to define variables:
struct EmployeeType DistManager, SalesRep1;

User-defined Data Type

2014/8/29 73



› A user-defined data type that can include both data 
(representation) and functions (behavior).

› Example:
interface StackType
{

public int pop();
public int push(int item);
public boolean isEmpty();
public boolean isFull();

}

Abstract Data Type

2014/8/29 74



› An abstract data type with extra features.
– Properties can be inherited.
– Constructor methods to initialize new objects.
– Contents can be encapsulated.

Class

2014/8/29 75



class StackOfIntegers implements StackType

{

private int[] StackEntries = new int[20];

private int StackPointer = 0;

public void push(int NewEntry)

{ if (StackPointer < 20)

StackEntries[StackPointer++] = NewEntry;

}

public int pop()

{ if (StackPointer > 0) return StackEntries[--StackPointer];

else return 0;

}

public boolean isEmpty()

{ return (StackPointer == 0);  

}

public boolean isFull()

{ return (StackPointer >= MAX); 

}

}

A Stack of Integers Implemented in Java 
and C#

2014/8/29 76



› Immediate addressing: Instruction contains the data to 
be accessed.

› Direct addressing:  Instruction contains the address of 
the data to be accessed.

› Indirect addressing:  Instruction contains the location 
of the address of the data to be accessed.

Pointers in Machine Language

2014/8/29 77



Our First Attempt at Expanding the Machine 
Language in Appendix C to Take Advantage of 
Pointers

2014/8/29 78



Loading a Register from a Memory Cell that is 
Located by Means of a Pointer Stored in a 
Register

2014/8/29 79


	Introduction to Computer Science
	Chapter 8:  Data Abstractions
	投影片編號 3
	Basic Data Structures
	Lists, Stacks, and Queues
	Terminology for Arrays
	Terminology for Aggregates
	Terminology for Lists
	Terminology for Stacks
	Terminology for Queues
	An Example of an Organization Chart
	Terminology for a Tree
	Tree Anatomy
	Terminology for a Tree (continued)
	Tree Terminology
	Related Concepts
	Novels Arranged by Title but Linked According to Authorship
	Storing Arrays
	The Array of Temperature Readings Stored in Memory Starting at Address x
	A Two-dimensional Array with Four Rows and Five Columns Stored in Row Major Order
	Storing Aggregates
	Storing the Aggregate Type Employee
	Storing Lists
	Names Stored in Memory as a Contiguous List
	The Structure of a Linked List
	Deleting an Entry From a Linked List
	Inserting an Entry Into a Linked List
	Storing Stacks and Queues
	A Stack in Memory
	A Queue Implementation with Head and Tail Pointers 
	A Circular Queue Containing the Letters P Through V
	Storing Binary Trees
	The Structure of a Node in a Binary Tree
	The Conceptual and Actual Organization of a Binary Tree Using a Linked Storage System
	 A Tree Stored Without Pointers
	A Sparse, Unbalanced Tree Shown in its Conceptual Form and as it Would be Stored Without Pointers
	Manipulating Data Structures
	A Function for Printing a Linked List
	Case Study
	The Letters A Through M Arranged in an Ordered Tree
	The Binary Search as it Would Appear if the List were Implemented as a Linked Binary Tree
	The Successively Smaller Trees Considered by the Function  when Searching for the Letter J
	Printing a Search Tree in Alphabetical Order
	A Function for Printing the Data in a Binary Tree
	Inserting the Entry M into the List B, E, G, H, J, K, N, P Stored as a Tree
	A Function for Inserting a New Entry in a List Stored as a Binary Tree
	Tree Traversals
	Breadth First Traversals
	Breadth first tree traversal with a queue
	Breadth first tree traversal with a queue
	Depth-First Traversals
	Pre-order Traversal: VLR
	Pre-order tree traversal with a stack
	Pre-order tree traversal with a stack
	Example
	Ordering of the preorder traversal is the same a the Universal Address System with lexicographic ordering.  
	In-order Traversal: LVR
	Inorder Traversal
	Example
	Post-order Traversal: LRV
	Postorder Traversal
	Example
	Representing Arithmetic Expressions
	Example
	Infix Notation
	Prefix Notation�(Polish Notation)
	Evaluating Prefix Notation
	Example
	Postfix Notation�(Reverse Polish)
	Evaluating Postfix Notation
	Example
	User-defined Data Type
	Abstract Data Type
	Class
	A Stack of Integers Implemented in Java and C#
	Pointers in Machine Language
	Our First Attempt at Expanding the Machine Language in Appendix C to Take Advantage of Pointers
	Loading a Register from a Memory Cell that is Located by Means of a Pointer Stored in a Register

