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Chapter 8. Data Abstractions
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» 8.1 Basic Data Structures

» 8.2 Related Concepts

» 8.3 Implementing Data Structures
» 8.4 A Short Case Study

» 8.5 Customized Data Types

» 8.6 Classes and Objects

» 8.7 Pointers in Machine Language




Basic Data Structures

> Arrays
> Aggregates

> List
— Stack
— Queue

> Tree




Lists, Stacks, and Queues

Queue
il Head - T’CKETS
_ Bab pr— Top
List — Stack — 7
Devon
_ _ Bottom Head

| Maurice —— Talil Tall

a. A list of names b. A stack of books c. A queue of people
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Terminology for Arrays

> Array: A block of data whose entries are of same type.
> A two dimensional array consists for rows and columns.
> Indices are used to identify positions.

2014/8/29 6



Terminology for Aggregates

» Aggregate: A block of data items that might be of
different type or sizes.

> Each data item is called a field.

» Fields are usually accessed by name.
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Terminology for Lists

» List: A collection of data whose entries are arranged
sequentially.

> Head: The beginning of the list.
» Tail: The end of the list.
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Terminology for Stacks

> Stack: A list in which entries are removed and inserted
only at the head.

LIFO: Last-in-first-out.
Top: The head of list (stack).
Bottom or base: The tail of list (stack).

v

v

v

v

Pop: To remove the entry at the top.

v

Push: To insert an entry at the top.
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Terminology for Queues

> Queue: A list in which entries are removed at the head
and are inserted at the tail.

> FIFO: First-in-first-out.
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An Example of an Organization Chart

Vice-President
of Sales

Vice-President

of Finance

Vice-President
of Services

=== ==
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Terminology for a Tree

> Tree: A collection of data whose entries have a
hierarchical organization.

v

Node: An entry in a tree.

v

Root node: The node at the top.
Terminal or leaf node: A node at the bottom.

v

v

Parent: The node immediately above a specified node

v

Child: A node immediately below a specified node

v

Ancestor: Parent, parent of parent, etc.
Descendent: Child, child of child, etc.
» Siblings: Nodes sharing a common parent.

v
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Tree Anatomy
The children of a node are, themselves, trees, called subtrees.
Root
Level Q--ccooooo
Level 1 ----ooomo " — Internal Node
Level 2 ool
Leaf

Level 3

Child of X

Parentof Zand Y Subtree
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Terminology for a Tree (continued)

> Binary tree: A tree in which every node has at most two
children.

> Depth: The number of nodes in longest path from root
to leaf.

14
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Tree Terminology

Root node

« 1 & @)

Siblings

Subtree

" Terminal (or leaf) nodes
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Related Concepts

> Abstraction

— Shield users (application software) from details of actual data
storage.

» Static vs. Dynamic Structure
— Does the shape and size change over time?

> Pointer
— A storage area that encodes an address where data is stored
— Later used to access the data.
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Novels Arranged by Title but Linked
According to Authorship

A Farewell to Arms
by Ernest Hemingway

/L
[

/ol
I

For Whom the Bell Tolls
by Ernest Hemingway

[/

The Sun Also Rises
by Ernest Hemingway

L

\

/L
1

L1}
g«

o
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Storing Arrays

> Memory address of a particular cell can be computed.
> Row-major order versus column major order.
> Address polynomial.
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The Array of Temperature Readings Stored
In Memory Starting at Address X

Addresses —[ X X+ 1 X+ 2 X449 Xx+4 X+5 X+6

Memory —|: i 1
cells

|
Readings[1] ‘

Readings[2]

Readings[3]

Readings[4]
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A Two-dimensional Array with Four Rows and
Five Columns Stored in Row Major Order

Conceptual array
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Storing Aggregates

> Fields can be stored one after the other in a contiguous
block:

— Memory cell address of each field can be computed.

» Fields can be stored in separate locations identified by
pointers.
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Storing the Aggregate Type Employee

Emp]Pyee

I I
Employee.Name Employee.Age Employee.SkillRating

S = BN
| V4 A\
Addresses: X X+ 25 X+ 26

a. Aggregate stored in a contiguous block

1 —Employee.Name

Y

Employee.Age

Pointers —

| ———————Employee.SkillRating

b. Aggregate fields stored in separate locations
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Storing Llists

» Contiguous list: List in which entries are stored in an
array.

» Linked list: List in which entries are linked by pointers.
— Head pointer: Pointer to first entry in list.
- null: A “non-pointer” value used to indicate end of list .
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Names Stored in Memory as a Contiguous

List

Contiguous block of memory cells
I

//
I ) l
//
7/ |
Firstname Second name Last name
stored here stored here stored here

2014/8/29 24




The Structure of a Linked List

Name Pointer

Head pointer
Name Pointer

Ti Name Pointer ‘
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Deleting an Entry From a Linked List

Head pointer

- Deleted entry

Name Pointer

. l
Name Pointer ]

(Name Pointer
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Inserting an Entry Into a Linked List

Head pointer

New entry

Name Pointer

New pointer
Name Pointer
--------------------------------------------- T e
Old pointer

Name Pointer

New pointer

Pointer
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Storing Stacks and Queues

» Stacks usually stored as contiguous lists.

> Queues usually stored as Circular Queues

— Stored in a contiguous block in which the first entry is
considered to follow the last entry.

— Prevents a queue from crawling out of its allotted storage space.
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A Stack in Memory

Stack’s

base Reserved block ?f memory cells

I
Space for growth

Stack pointer
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A Queue Implementation with Head and

Tail Pointers

Head Head B
pointer pointer

C
Tail Tail N
pointer pointer =

:

a. Empty queue

Head He_ad >
pointer pointer

D
Tail
pointer

y

VW

b. After inserting entries A, B, and C

MWV

Y

Tail .
pointer E

c. After removing A and
inserting D
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d. After removing B and
inserting E
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A Circular Queue Containing the Letters P
Through V

First cell
in block

First cell
in block

T

Head
ey
Tail

|I;Ioei?1(':er PRITEGE

Tail

pointer

h. Conceptual storage with last cell “adjacent” to first cell

S
Last cell /

in block

a. Queue as actually stored
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Storing Binary Trees

» Linked structure.
— Each node = data cells + two child pointers.
— Accessed via a pointer to root node.

» Contiguous array structure.
— A[ 1] = root node.
- A[2],A[3] =childrenof A[ 1].
> A[4],A[5] =childrenof A[2] .
> A[6],A[7] =children of A[3] .
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The Structure of a Node in a Binary Tree

Cells containing
the data
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>

The Conceptual and Actual Organization of a
Binary Tree Using a Linked Storage System
| e \C
YN
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A Tree Stored Without Pointers

Conceptual tree

Actual storage organization

1 2 3 4 5 6 7

Root n{de / /

Nodes in 2nd Nodes in 3rd
level of tree level of tree
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A Sparse, Unbalanced Tree Shown in its
Conceptual Form and as it Would be Stored
Without Pointers

*

B C

Conceptual tree

Actual storage organization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TP T T [T T Te

/ / /

Root 2nd level 3rd level 4th level
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Manipulating Data Structures

> ldeally, a data structure should be manipulated solely by
pre-defined functions.

- Example: A list typically has a function 1nsert for inserting
new entries.

— The data structure along with these functions constitutes a
complete abstract tool.
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A Function for Printing a Linked List

def PrintList (List):
CurrentPointer = List.Head
while (CurrentPointer 1s not None):
print(CurrentPointer._Value)

CurrentPointer = CurrentPointer.Next
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Case Study

Problem:

Construct an abstract tool consisting of a list of names
In alphabetical order along with the operations: search,
print, and insert.
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The Letters A Through M Arranged in an
Ordered Tree

D/G\K
B/ \F I/ \M

SN SN

E




The Binary Search as it Would Appear if the
List were Implemented as a Linked Binary Tree

def Search (Tree, TargetValue):
IT (Tree 1s None):
return None # Search failed
elif (Targetvalue == Tree.Value):
return Tree # Search succeeded
elif (TargetvValue < Tree.Value):
# Continue search in left subtree
return Search(Tree.Left, TargetValue)
elif (Targetvalue > Tree.Value):
# Continue search 1In right subtree

return Search(Tree.Right, TargetValue)
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The Successively Smaller Trees Considered by
the Function when Searching for the Letter J

-

A

B/D
\C
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Printing a Search Tree in Alphabetical
Order

D/F\
N RN

N\ /

1. Print the left 2. Print 3. Printthe
branch in the root right branch in
alphabetical node alphabetical order
order
| NN |
A B C D E, F, G H I J
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A Function for Printing the Data In a
Binary Tree

def PrintTree (Tree):

IT (Tree 1s not None):
PrintTree(Tree.Left)
print(Tree.Value)
PrintTree(Tree.Right)
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Inserting the Entry M into the List B, E,
G, H, J, K, N, P StoredasaTree

a. Search for the new entry until its absence is detected

b. This is the position in which the new entry should be attached
/H \
E /N \
B G / K\ P
J M
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A Function for Inserting a New Entry in a
List Stored as a Binary Tree

def Insert(Tree, NewValue):

iIT (Tree 1s None):
# Create a new leaf with NewValue
Tree = TreeNode()
Tree_Value = NewValue
elif (Newvalue < Tree.Value):
# Insert NewValue iInto the left subtree
Tree.Left = Insert(Tree.Left, NewValue)
elift (Newalue > Tree.Value):
# Insert NewValue 1Into the right subtree
Tree.Right = Insert(Tree.Right, NewValue)
else:
# Make no change

return Tree
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Tree Traversals

> One of the most common operations performed on trees,
are a tree traversals

» A traversal starts at the root of the tree and visits every
node in the tree exactly once

— Visit means to process the data in the node

» Traversals are either depth-first or breadth-first
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Breadth First Traversals

> All the nodes in one level
are visited

> Followed by the nodes
the at next level

> Beginning at the root

> For the sample tree
- 7,6,10,4,8,13,3,5




Breadth first tree traversal with a queue

> Enqueue root

> While queue is not empty
— Dequeue a vertex and write it to the output list
— Enqueue its children left-to-right




. Breadth first tree traversal with a queue

Step Output  Queue

0 o

1 o £,0

2 € d,1,

3 ) 1L,B, KA

4 1 B,k,A 08

5 B KA,

6 K A0 9

7 Y ) A
3 6 Y 10 11
9 Y o.M

10 ¢ n.u T

11 n H,X

s . . 013

13 yé
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Depth-First Traversals

» There are 8 different depth-first traversals
— VLR (pre-order traversal)
- VRL
— LVR (in-order traversal)
- RVL
- RLV
— LRV (post-order traversal)
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Pre-order Traversal: VLR

> VISIt the node

> Do a pre-order traversal
of the left subtree

> Finish with a pre-order
traversal of the right
subtree

> For the sample tree
- 7,6,4,3,5,10, 8, 13




Pre-order tree traversal with a stack

> Push root onto the stack

> While stack is not empty
— Pop a vertex off stack, and write it to the output list
— Push its children right-to-left onto stack




Pre-order tree traversal with a stack

Step Output  Stack "

0 o
1 o 0,€
2 g o,p,1 3 @4 01213
3 1 o,p
4 B 0, 05
5 ¢ 8,y
6 Y o,1n,¢ 6
7 ¢ 69“9” A
8 i 6,1,X 7 10
9 X o,M
10 n 5 ©38
Opu 11 o 7\‘,1(
12« A ©9
Oy 13 A
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’l
. Example
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Ordering of the preorder traversal iIs the same a the
Universal Address System with lexicographic ordering.

221 222 2.2.3
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In-order Traversal: LVR

> Do an in-order traversal
of the left subtree

> VIsit the node

> Finish with an in-order
traversal of the right
subtree

> For the sample tree
- 3,4,5,6,7,8,10,13




Inorder Traversal

Step 1: Visit T, in inorder

Step 2: Visit r
Step 3: Visit T in inorder

Step n+1: Visit T, in inorder




. Example
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Post-order Traversal: LRV
> Do a post-order traversal
of the left subtree

> Followed by a post-order
traversal of the right
subtree

> VIsit the node

> For the sample tree
- 3,5,4,6,8,13,10, 7




Postorder Traversal

Step 1: Visit T; in postorder r

Step 2: Visit T, in postorder

Step n: Visit T, In postorder
Step n+1: Visit r
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. Example
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Representing Arithmetic Expressions

> Complicated arithmetic expressions can be represented
by an ordered rooted tree

— Internal vertices represent operators
— Leaves represent operands

> Build the tree bottom-up
— Construct smaller subtrees
— Incorporate the smaller subtrees as part of larger subtrees




Example
> (X+Y)2 + (x-3)/(y+2)




Infix Notation

» Traverse in inorder (LVVR) adding parentheses for each
operation




Prefix Notation
(Polish Notation)

> Traverse in preorder (VLR)

+ T+xy2/-x3+y?2




Evaluating Prefix Notation

> In an prefix expression, a binary operator precedes its two
operands

» The expression is evaluated right-left

» Look for the first operator from the right

» Evaluate the operator with the two operands immediately
to its right

68




Example

+/+222/-32& 10D




Postfix Notation
(Reverse Polish)

» Traverse in postorder (LRV)




Evaluating Postfix Notation

> In an postfix expression, a binary operator follows its two
operands

» The expression is evaluated left-right
> Look for the first operator from the left

» Evaluate the operator with the two operands immediately
to its left

71







User-defined Data Type

> Use an aggregate structure to define new type, in C:
struct EmployeeType

{
char Name[25];
int Age;
real SkillRating;
+

» Use the new type to define variables:
struct EmployeeType DistManager, SalesRepl;
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Abstract Data Type

» A user-defined data type that can include both data
(representation) and functions (behavior).

» Example:

interface StackType

1
public Int pop();
public Int push(int item);
public boolean 1sEmpty();
public boolean isFull();
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Class

> An abstract data type with extra features.
— Properties can be inherited.
— Constructor methods to initialize new objects.
— Contents can be encapsulated.
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A Stack of Integers Implemented in Java
and C#

class StackOfintegers implements StackType

{
private int[] StackEntries = new int[20];
private int StackPointer = 0O;
public void push(int NewEntry)
{ if (StackPointer < 20)
StackEntries[StackPointer++] = NewEntry;
¥
public int pop()
{ if (StackPointer > 0) return StackEntries[--StackPointer];
else return O;
¥
public boolean isEmpty()
{ return (StackPointer == 0);
}
public boolean isFull()
{ return (StackPointer >= MAX);
}
}

2014/8/29
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Pointers in Machine Language
> Immediate addressing: Instruction contains the data to
be accessed.

» Direct addressing: Instruction contains the address of
the data to be accessed.

» Indirect addressing: Instruction contains the location
of the address of the data to be accessed.
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Our First Attempt at Expanding the Machine
Language in Appendix C to Take Advantage of
Pointers

Address in
Instruction ’
GEM tells where Main memory
p:)lntﬁr_|s Pointer stored
o stored in
Register 5 Instruction in memory at address OxAA
Instruction OxAA
atz register Pointer indicates
g location of Data
i Bus

-1 Data

Data transferred
to register during
execute phase of
machine cycle
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Loading a Register from a Memory Cell that Is
ocated by Means of a Pointer Stored in a
Register

CPU Main memory

- _Insf[ruction
msvucton | which  Data ransorred
Register 4 register ::%%:’;;[?nrs execute phase of
nointer machine cycle
poeo] .
——— D

Data - ---————=— "™ -—---——- -~ fulnlaiaiaiadadaladadaiatad ata

\ Pointer indicates

location of Data

Register b
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