Introduction to Computer Science

William Hsu

Advanced Computation Laboratory _ _

Department of Computer Science and Engineering _
DePartment_of Environmental Biology and Fisheries Science
National Taiwan Ocean University

Chapter 8. Data Abstractions

('\/ 7 //\() ((\/(()/ . 7// -//7\'/61/ ()///) //A(called a ,r,)///r'/’ N,
4 /}7/) (Tirit - 7// Tirsy ()///) e called a ”7///)///) "
TIAI (///\n/ In, Hill . /4’//) o called a ,Z////y ///’/‘///r’/' ”,
2 7,5(\/ (Tirit 7// (g(/ (\/(/) . ////,(called a 6////7///('/(/:7.
('\/ 7(9(\/ ((\/!U/ . 7// (_.9?// ('\/(w'/) /I//A(called a /:J//'('////w maodule ”,

GAN (Gt Hete,

Stack

PR YEY L

Array
e

o ==

DYNAMIC OPTIMALITY

MEMORY HIERARCHY

e K)///Z e called @ "randam naumber generalor "
/)/Z(I/:)) e called a ,,/”/’7/7’/’ balels ”,

Sorted Set

A3

GEONETRY INTEGERS

{value:score}
{A, B, C, D} {C:1, D:2, A3, D:4}

fieldl

field2

field3

fieldd

fkey:value}
{field1:"A", field2:“B"...

JIT Data Structures

» 8.1 Basic Data Structures

» 8.2 Related Concepts

» 8.3 Implementing Data Structures
» 8.4 A Short Case Study

» 8.5 Customized Data Types

» 8.6 Classes and Objects

» 8.7 Pointers in Machine Language

Basic Data Structures

> Arrays
> Aggregates

> List
— Stack
— Queue

> Tree

Lists, Stacks, and Queues

Queue
il Head - T’CKETS
_ Bab pr— Top
List — Stack — 7
Devon
_ _ Bottom Head

| Maurice —— Talil Tall

a. A list of names b. A stack of books c. A queue of people

2014/8/29 5

Terminology for Arrays

> Array: A block of data whose entries are of same type.
> A two dimensional array consists for rows and columns.
> Indices are used to identify positions.

2014/8/29 6

Terminology for Aggregates

» Aggregate: A block of data items that might be of
different type or sizes.

> Each data item is called a field.

» Fields are usually accessed by name.

2014/8/29 7

Terminology for Lists

» List: A collection of data whose entries are arranged
sequentially.

> Head: The beginning of the list.
» Tail: The end of the list.

2014/8/29 8

Terminology for Stacks

> Stack: A list in which entries are removed and inserted
only at the head.

LIFO: Last-in-first-out.
Top: The head of list (stack).
Bottom or base: The tail of list (stack).

v

v

v

v

Pop: To remove the entry at the top.

v

Push: To insert an entry at the top.

2014/8/29 9

Terminology for Queues

> Queue: A list in which entries are removed at the head
and are inserted at the tail.

> FIFO: First-in-first-out.

2014/8/29 10

An Example of an Organization Chart

Vice-President
of Sales

Vice-President

of Finance

Vice-President
of Services

=== ==

2014/8/29

11

Terminology for a Tree

> Tree: A collection of data whose entries have a
hierarchical organization.

v

Node: An entry in a tree.

v

Root node: The node at the top.
Terminal or leaf node: A node at the bottom.

v

v

Parent: The node immediately above a specified node

v

Child: A node immediately below a specified node

v

Ancestor: Parent, parent of parent, etc.
Descendent: Child, child of child, etc.
» Siblings: Nodes sharing a common parent.

v

2014/8/29 12

Tree Anatomy
The children of a node are, themselves, trees, called subtrees.
Root
Level Q--ccooooo
Level 1 ----ooomo " — Internal Node
Level 2 ool
Leaf

Level 3

Child of X

Parentof Zand Y Subtree

13

Terminology for a Tree (continued)

> Binary tree: A tree in which every node has at most two
children.

> Depth: The number of nodes in longest path from root
to leaf.

14

2014/8/29

Tree Terminology

Root node

« 1 & @)

Siblings

Subtree

" Terminal (or leaf) nodes

2014/8/29 15

Related Concepts

> Abstraction

— Shield users (application software) from details of actual data
storage.

» Static vs. Dynamic Structure
— Does the shape and size change over time?

> Pointer
— A storage area that encodes an address where data is stored
— Later used to access the data.

2014/8/29 16

Novels Arranged by Title but Linked
According to Authorship

A Farewell to Arms
by Ernest Hemingway

/L
[

/ol
I

For Whom the Bell Tolls
by Ernest Hemingway

[/

The Sun Also Rises
by Ernest Hemingway

L

\

/L
1

L1}
g«

o

2014/8/29

17

Storing Arrays

> Memory address of a particular cell can be computed.
> Row-major order versus column major order.
> Address polynomial.

2014/8/29 18

The Array of Temperature Readings Stored
In Memory Starting at Address X

Addresses —[X X+ 1 X+ 2 X449 Xx+4 X+5 X+6

Memory —|: i 1
cells

|
Readings[1] ‘

Readings[2]

Readings[3]

Readings[4]

2014/8/29 19

A Two-dimensional Array with Four Rows and
Five Columns Stored in Row Major Order

Conceptual array

: I#ow|1 I
: |

Row?2 |

| Il%ow

I L L 1
{ I I Row1 | I Row2 | | ROWF
1 I |] l L |] L 1 |

Entry from 4th column in Row 3

| I;%owlﬂf :
Machine's memory |7
|l
I
|
1

=

o

=
=
;-f‘,‘_

2014/8/29 20

Storing Aggregates

> Fields can be stored one after the other in a contiguous
block:

— Memory cell address of each field can be computed.

» Fields can be stored in separate locations identified by
pointers.

2014/8/29 21

Storing the Aggregate Type Employee

Emp]Pyee

I I
Employee.Name Employee.Age Employee.SkillRating

S = BN
| V4 A\
Addresses: X X+ 25 X+ 26

a. Aggregate stored in a contiguous block

1 —Employee.Name

Y

Employee.Age

Pointers —

| ———————Employee.SkillRating

b. Aggregate fields stored in separate locations

2014/8/29 22

Storing Llists

» Contiguous list: List in which entries are stored in an
array.

» Linked list: List in which entries are linked by pointers.
— Head pointer: Pointer to first entry in list.
- null: A “non-pointer” value used to indicate end of list .

2014/8/29 23

Names Stored in Memory as a Contiguous

List

Contiguous block of memory cells
I

//
I) l
//
7/ |
Firstname Second name Last name
stored here stored here stored here

2014/8/29 24

The Structure of a Linked List

Name Pointer

Head pointer
Name Pointer

Ti Name Pointer ‘

2014/8/29 25

Deleting an Entry From a Linked List

Head pointer

- Deleted entry

Name Pointer

. l
Name Pointer]

(Name Pointer

2014/8/29 26

New pointer

Inserting an Entry Into a Linked List

Head pointer

New entry

Name Pointer

New pointer
Name Pointer
--- T e
Old pointer

Name Pointer

New pointer

Pointer

2014/8/29 27

Storing Stacks and Queues

» Stacks usually stored as contiguous lists.

> Queues usually stored as Circular Queues

— Stored in a contiguous block in which the first entry is
considered to follow the last entry.

— Prevents a queue from crawling out of its allotted storage space.

2014/8/29 28

A Stack in Memory

Stack’s

base Reserved block ?f memory cells

I
Space for growth

Stack pointer

2014/8/29 .

A Queue Implementation with Head and

Tail Pointers

Head Head B
pointer pointer

C
Tail Tail N
pointer pointer =

:

a. Empty queue

Head He_ad >
pointer pointer

D
Tail
pointer

y

VW

b. After inserting entries A, B, and C

MWV

Y

Tail .
pointer E

c. After removing A and
inserting D

2014/8/29

d. After removing B and
inserting E

30

A Circular Queue Containing the Letters P
Through V

First cell
in block

First cell
in block

T

Head
ey
Tail

|I;Ioei?1(':er PRITEGE

Tail

pointer

h. Conceptual storage with last cell “adjacent” to first cell

S
Last cell /

in block

a. Queue as actually stored

2014/8/29 31

Storing Binary Trees

» Linked structure.
— Each node = data cells + two child pointers.
— Accessed via a pointer to root node.

» Contiguous array structure.
— A[1] = root node.
- A[2],A[3] =childrenof A[1].
> A[4],A[5] =childrenof A[2] .
> A[6],A[7] =children of A[3] .

2014/8/29 32

The Structure of a Node in a Binary Tree

Cells containing
the data

2014/8/29 33

-
>

The Conceptual and Actual Organization of a
Binary Tree Using a Linked Storage System
| e \C
YN

2014/8/29 34

A Tree Stored Without Pointers

Conceptual tree

Actual storage organization

1 2 3 4 5 6 7

Root n{de / /

Nodes in 2nd Nodes in 3rd
level of tree level of tree

2014/8/29 35

A Sparse, Unbalanced Tree Shown in its
Conceptual Form and as it Would be Stored
Without Pointers

*

B C

Conceptual tree

Actual storage organization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TP T T [T T Te

/ / /

Root 2nd level 3rd level 4th level

2014/8/29 36

Manipulating Data Structures

> ldeally, a data structure should be manipulated solely by
pre-defined functions.

- Example: A list typically has a function 1nsert for inserting
new entries.

— The data structure along with these functions constitutes a
complete abstract tool.

2014/8/29 37

A Function for Printing a Linked List

def PrintList (List):
CurrentPointer = List.Head
while (CurrentPointer 1s not None):
print(CurrentPointer._Value)

CurrentPointer = CurrentPointer.Next

2014/8/29 38

Case Study

Problem:

Construct an abstract tool consisting of a list of names
In alphabetical order along with the operations: search,
print, and insert.

2014/8/29 39

The Letters A Through M Arranged in an
Ordered Tree

D/G\K
B/ \F I/ \M

SN SN

E

The Binary Search as it Would Appear if the
List were Implemented as a Linked Binary Tree

def Search (Tree, TargetValue):
IT (Tree 1s None):
return None # Search failed
elif (Targetvalue == Tree.Value):
return Tree # Search succeeded
elif (TargetvValue < Tree.Value):
Continue search in left subtree
return Search(Tree.Left, TargetValue)
elif (Targetvalue > Tree.Value):
Continue search 1In right subtree

return Search(Tree.Right, TargetValue)

2014/8/29 41

The Successively Smaller Trees Considered by
the Function when Searching for the Letter J

-

A

B/D
\C

2014/8/29 42

Printing a Search Tree in Alphabetical
Order

D/F\
N RN

N\ /

1. Print the left 2. Print 3. Printthe
branch in the root right branch in
alphabetical node alphabetical order
order
| NN |
A B C D E, F, G H I J

2014/8/29 43

A Function for Printing the Data In a
Binary Tree

def PrintTree (Tree):

IT (Tree 1s not None):
PrintTree(Tree.Left)
print(Tree.Value)
PrintTree(Tree.Right)

2014/8/29 44

Inserting the Entry M into the List B, E,
G, H, J, K, N, P StoredasaTree

a. Search for the new entry until its absence is detected

b. This is the position in which the new entry should be attached
/H \
E /N \
B G / K\ P
J M

2014/8/29 45

A Function for Inserting a New Entry in a
List Stored as a Binary Tree

def Insert(Tree, NewValue):

iIT (Tree 1s None):
Create a new leaf with NewValue
Tree = TreeNode()
Tree_Value = NewValue
elif (Newvalue < Tree.Value):
Insert NewValue iInto the left subtree
Tree.Left = Insert(Tree.Left, NewValue)
elift (Newalue > Tree.Value):
Insert NewValue 1Into the right subtree
Tree.Right = Insert(Tree.Right, NewValue)
else:
Make no change

return Tree

2014/8/29 46

Tree Traversals

> One of the most common operations performed on trees,
are a tree traversals

» A traversal starts at the root of the tree and visits every
node in the tree exactly once

— Visit means to process the data in the node

» Traversals are either depth-first or breadth-first

47

Breadth First Traversals

> All the nodes in one level
are visited

> Followed by the nodes
the at next level

> Beginning at the root

> For the sample tree
- 7,6,10,4,8,13,3,5

Breadth first tree traversal with a queue

> Enqueue root

> While queue is not empty
— Dequeue a vertex and write it to the output list
— Enqueue its children left-to-right

. Breadth first tree traversal with a queue

Step Output Queue

0 o

1 o £,0

2 € d,1,

3) 1L,B, KA

4 1 B,k,A 08

5 B KA,

6 K A0 9

7 Y) A
3 6 Y 10 11
9 Y o.M

10 ¢ n.u T

11 n H,X

s . . 013

13 yé

51

Depth-First Traversals

» There are 8 different depth-first traversals
— VLR (pre-order traversal)
- VRL
— LVR (in-order traversal)
- RVL
- RLV
— LRV (post-order traversal)

52

Pre-order Traversal: VLR

> VISIt the node

> Do a pre-order traversal
of the left subtree

> Finish with a pre-order
traversal of the right
subtree

> For the sample tree
- 7,6,4,3,5,10, 8, 13

Pre-order tree traversal with a stack

> Push root onto the stack

> While stack is not empty
— Pop a vertex off stack, and write it to the output list
— Push its children right-to-left onto stack

Pre-order tree traversal with a stack

Step Output Stack "

0 o
1 o 0,€
2 g o,p,1 3 @4 01213
3 1 o,p
4 B 0, 05
5 ¢ 8,y
6 Y o,1n,¢ 6
7 ¢ 69“9” A
8 i 6,1,X 7 10
9 X o,M
10 n 5 ©38
Opu 11 o 7\‘,1(
12« A ©9
Oy 13 A

55

’l
. Example

56

Ordering of the preorder traversal iIs the same a the
Universal Address System with lexicographic ordering.

221 222 2.2.3

57

In-order Traversal: LVR

> Do an in-order traversal
of the left subtree

> VIsit the node

> Finish with an in-order
traversal of the right
subtree

> For the sample tree
- 3,4,5,6,7,8,10,13

Inorder Traversal

Step 1: Visit T, in inorder

Step 2: Visit r
Step 3: Visit T in inorder

Step n+1: Visit T, in inorder

. Example

60

Post-order Traversal: LRV
> Do a post-order traversal
of the left subtree

> Followed by a post-order
traversal of the right
subtree

> VIsit the node

> For the sample tree
- 3,5,4,6,8,13,10, 7

Postorder Traversal

Step 1: Visit T; in postorder r

Step 2: Visit T, in postorder

Step n: Visit T, In postorder
Step n+1: Visit r

62

. Example

63

Representing Arithmetic Expressions

> Complicated arithmetic expressions can be represented
by an ordered rooted tree

— Internal vertices represent operators
— Leaves represent operands

> Build the tree bottom-up
— Construct smaller subtrees
— Incorporate the smaller subtrees as part of larger subtrees

Example
> (X+Y)2 + (x-3)/(y+2)

Infix Notation

» Traverse in inorder (LVVR) adding parentheses for each
operation

Prefix Notation
(Polish Notation)

> Traverse in preorder (VLR)

+ T+xy2/-x3+y?2

Evaluating Prefix Notation

> In an prefix expression, a binary operator precedes its two
operands

» The expression is evaluated right-left

» Look for the first operator from the right

» Evaluate the operator with the two operands immediately
to its right

68

Example

+/+222/-32& 10D

Postfix Notation
(Reverse Polish)

» Traverse in postorder (LRV)

Evaluating Postfix Notation

> In an postfix expression, a binary operator follows its two
operands

» The expression is evaluated left-right
> Look for the first operator from the left

» Evaluate the operator with the two operands immediately
to its left

71

User-defined Data Type

> Use an aggregate structure to define new type, in C:
struct EmployeeType

{
char Name[25];
int Age;
real SkillRating;
+

» Use the new type to define variables:
struct EmployeeType DistManager, SalesRepl;

2014/8/29 73

Abstract Data Type

» A user-defined data type that can include both data
(representation) and functions (behavior).

» Example:

interface StackType

1
public Int pop();
public Int push(int item);
public boolean 1sEmpty();
public boolean isFull();

2014/8/29 74

Class

> An abstract data type with extra features.
— Properties can be inherited.
— Constructor methods to initialize new objects.
— Contents can be encapsulated.

2014/8/29 75

A Stack of Integers Implemented in Java
and C#

class StackOfintegers implements StackType

{
private int[] StackEntries = new int[20];
private int StackPointer = 0O;
public void push(int NewEntry)
{ if (StackPointer < 20)
StackEntries[StackPointer++] = NewEntry;
¥
public int pop()
{ if (StackPointer > 0) return StackEntries[--StackPointer];
else return O;
¥
public boolean isEmpty()
{ return (StackPointer == 0);
}
public boolean isFull()
{ return (StackPointer >= MAX);
}
}

2014/8/29

76

Pointers in Machine Language
> Immediate addressing: Instruction contains the data to
be accessed.

» Direct addressing: Instruction contains the address of
the data to be accessed.

» Indirect addressing: Instruction contains the location
of the address of the data to be accessed.

2014/8/29 77

Our First Attempt at Expanding the Machine
Language in Appendix C to Take Advantage of
Pointers

Address in
Instruction ’
GEM tells where Main memory
p:)lntﬁr_|s Pointer stored
o stored in
Register 5 Instruction in memory at address OxAA
Instruction OxAA
atz register Pointer indicates
g location of Data
i Bus

-1 Data

Data transferred
to register during
execute phase of
machine cycle

2014/8/29 -8

Loading a Register from a Memory Cell that Is
ocated by Means of a Pointer Stored in a
Register

CPU Main memory

- _Insf[ruction
msvucton | which Data ransorred
Register 4 register ::%%:’;;[?nrs execute phase of
nointer machine cycle
poeo] .
——— D

Data - ---————=— "™ -—---——- -~ fulnlaiaiaiadadaladadaiatad ata

\ Pointer indicates

location of Data

Register b

2014/8/29 79

	Introduction to Computer Science
	Chapter 8: Data Abstractions
	投影片編號 3
	Basic Data Structures
	Lists, Stacks, and Queues
	Terminology for Arrays
	Terminology for Aggregates
	Terminology for Lists
	Terminology for Stacks
	Terminology for Queues
	An Example of an Organization Chart
	Terminology for a Tree
	Tree Anatomy
	Terminology for a Tree (continued)
	Tree Terminology
	Related Concepts
	Novels Arranged by Title but Linked According to Authorship
	Storing Arrays
	The Array of Temperature Readings Stored in Memory Starting at Address x
	A Two-dimensional Array with Four Rows and Five Columns Stored in Row Major Order
	Storing Aggregates
	Storing the Aggregate Type Employee
	Storing Lists
	Names Stored in Memory as a Contiguous List
	The Structure of a Linked List
	Deleting an Entry From a Linked List
	Inserting an Entry Into a Linked List
	Storing Stacks and Queues
	A Stack in Memory
	A Queue Implementation with Head and Tail Pointers
	A Circular Queue Containing the Letters P Through V
	Storing Binary Trees
	The Structure of a Node in a Binary Tree
	The Conceptual and Actual Organization of a Binary Tree Using a Linked Storage System
	 A Tree Stored Without Pointers
	A Sparse, Unbalanced Tree Shown in its Conceptual Form and as it Would be Stored Without Pointers
	Manipulating Data Structures
	A Function for Printing a Linked List
	Case Study
	The Letters A Through M Arranged in an Ordered Tree
	The Binary Search as it Would Appear if the List were Implemented as a Linked Binary Tree
	The Successively Smaller Trees Considered by the Function when Searching for the Letter J
	Printing a Search Tree in Alphabetical Order
	A Function for Printing the Data in a Binary Tree
	Inserting the Entry M into the List B, E, G, H, J, K, N, P Stored as a Tree
	A Function for Inserting a New Entry in a List Stored as a Binary Tree
	Tree Traversals
	Breadth First Traversals
	Breadth first tree traversal with a queue
	Breadth first tree traversal with a queue
	Depth-First Traversals
	Pre-order Traversal: VLR
	Pre-order tree traversal with a stack
	Pre-order tree traversal with a stack
	Example
	Ordering of the preorder traversal is the same a the Universal Address System with lexicographic ordering.
	In-order Traversal: LVR
	Inorder Traversal
	Example
	Post-order Traversal: LRV
	Postorder Traversal
	Example
	Representing Arithmetic Expressions
	Example
	Infix Notation
	Prefix Notation�(Polish Notation)
	Evaluating Prefix Notation
	Example
	Postfix Notation�(Reverse Polish)
	Evaluating Postfix Notation
	Example
	User-defined Data Type
	Abstract Data Type
	Class
	A Stack of Integers Implemented in Java and C#
	Pointers in Machine Language
	Our First Attempt at Expanding the Machine Language in Appendix C to Take Advantage of Pointers
	Loading a Register from a Memory Cell that is Located by Means of a Pointer Stored in a Register

