
Introduction to Computer Science

William Hsu
Department of Computer Science and Engineering
National Taiwan Ocean University

Chapter 6:
Programming Languages
“ If debugging is the process of removing software bugs, then programming
must be the process of putting them in. ”

- Edsger Dijkstra

› 6.1 Historical Perspective

› 6.2 Traditional Programming
Concepts

› 6.3 Procedural Units

› 6.4 Language Implementation

› 6.5 Object Oriented Programming

› 6.6 Programming Concurrent
Activities

› 6.7 Declarative Programming

› 8945 ! (Since 18th century)
– https://hopl.info/

› Languages still in use can be less than 500.

How many programming languages are
there?

2014/8/29 4

https://hopl.info/

The Evolution of Programming Paradigms

2014/8/29 5

A Function for Checkbook Balancing
Constructed from Simpler Functions

2014/8/29 6

› High-level languages (C, C++, Java, C#, FORTRAN)
include many kinds of abstractions
– Simple: constants, literals, variables
– Complex: statements, expressions, control
– Esoteric: procedures, modules, libraries

Traditional Programming Concepts

The Composition of a Typical Imperative
Program or Program Unit

2014/8/29 8

› Integer: Whole numbers

› Real (float): Numbers with fractions

› Character: Symbols

› Boolean: True/false

Data Types

2014/8/29 9

float Length, Width;

int Price, Total, Tax;

char Symbol;

int WeightLimit = 100;

Variables and Data types

2014/8/29 10

› Conceptual shape or arrangement of data

› A common data structure is the array
– In C

int Scores[2][9];

– In FORTRAN
INTEGER Scores(2,9)

Data Structure

2014/8/29 11

A Two-dimensional Array with Two Rows
and Nine Columns

2014/8/29 12

The Conceptual Structure of the Aggregate
type Employee

struct {

char Name[25];

int Age;

float SkillRating;

} Employee;

2014/8/29 13

› In C, C++, C#, Java
Z = X + y;

› In Ada
Z := X + y;

› In APL (A Programming Language)
Z ← X + y

Assignment Statements

2014/8/29 14

› Go to statement
goto 40

20 Evade()
goto 70

40 if (KryptoniteLevel < LethalDose) then goto 60
goto 20

60 RescueDamsel()
70 ...

› As a single statement
if (KryptoniteLevel < LethalDose):

RescueDamsel()
else:

Evade()

Control Statements

2014/8/29 15

› If in Python
if (condition):

statementA
else:

statementB

› In C, C++, C#, and Java
if (condition) statementA; else statementB;

› In Ada
IF condition THEN

statementA;
ELSE

statementB;
END IF;

Control Statements (continued)

2014/8/29 16

› While in Python
while (condition):

body

› In C, C++, C#, and Java
while (condition)
{ body }

› In Ada
WHILE condition LOOP

body
END LOOP;

Control Statements (continued)

2014/8/29 17

› Switch statement in C, C++, C#, and Java
switch (variable) {

case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD; }

› In Ada
CASE variable IS

WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE;

Control Statements (continued)

2014/8/29 18

The for Loop Structure and its
Representation in C++, C#, and Java

2014/8/29 19

› Explanatory statements within a program

› Helpful when a human reads a program

› Ignored by the compiler

/* This is a comment in C/C++/Java. */

// This is a comment in C/C++/Java.

<!-- This is a comment -->

% This is a comment in LaTeX

Comments

2014/8/29 20

Legend never dies

2014/8/29 21

› Many terms for this concept:
– Subprogram, subroutine, procedure, method,

function.

› Unit begins with the function’s header.

› Local versus Global Variables.

› Formal versus Actual Parameters.

› Passing parameters by value versus reference.

Procedural Units

2014/8/29 22

The Flow of Control Involving a Function

2014/8/29 23

Caller

Callee

The Function ProjectPopulation
Written in the Programming Language C

2014/8/29 24

Executing the Function Demo and Passing
Parameters by Value

2014/8/29 25

Executing the Function Demo and Passing
Parameters by Reference

2014/8/29 26

The Fruitful Function CylinderVolume
Written in the Programming Language C

2014/8/29 27

› The process of converting a program written in a high-
level language into a machine-executable form.
– The Lexical Analyzer recognizes which strings of symbols

represent a single entity, or token.
– The Parser groups tokens into statements, using syntax

diagrams to make parse trees.
– The Code Generator constructs machine-language instructions

to implement the statements.

Language Implementation

The Translation Process

2014/8/29 29

Compilation vs. Interpretation
› Compilation vs. interpretation

– Not opposites.
– Not a clear-cut distinction.

› Pure Compilation
– The compiler translates the high-level source program into an

equivalent target program (typically in machine language).
› The “target program” is called the object code.
› You translate once and run many times.

2020/11/30 30

Compilation
› Compilation is the conceptual process of translating

source code into a CPU-executable binary target code

› Compiler runs on the same platform X as the target code

2020/11/30 31

Target
Program

Compiler
Source

Program
Target

Program

Input Output

Run on X

Compile on X

Debug on X

Cross Compilation
› Compiler runs on platform X, target code runs on

platform Y

2020/11/30 32

Target
Program

Cross
Compiler

Source
Program

Target
Program

Input Output

Run on Y

Compile on X Copy to Y

Debug on X
(= emulate Y)

Compilation vs. Interpretation
› Pure Interpretation

– Interpreter stays around for the execution of the program.
– Interpreter is the locus of control during execution.
– You translate for each run.

2020/11/30 33

Interpretation
› Interpretation is the conceptual process of running high-

level code by an interpreter

2020/11/30 34

Interpreter

Source
Program

Input
Output

Compilation vs. Interpretation
› Interpretation:

– Greater flexibility.
– Better diagnostics (error messages), easier to debug.

› Compilation
– Better performance.

2020/11/30 35

Compilation vs. Interpretation
› Compilers “try to be as smart as possible” to fix

decisions that can be taken at compile time to avoid to
generate code that makes this decision at run time
– Type checking at compile time vs. runtime
– Static allocation
– Static linking
– Code optimization

› Compilation leads to better performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features

2020/11/30 36

Compilation vs. Interpretation
› Benefit of interpretation?

– Interpretation facilitates interactive debugging and testing
› Interpretation leads to better diagnostics of a programming

problem
› Procedures can be invoked from command line by a user
› Variable values can be inspected and modified by a user

– Some programming languages cannot be purely compiled into
machine code alone
› Some languages allow programs to rewrite/add code to the code

base dynamically
› Some languages allow programs to translate data to code for

execution (interpretation)

2020/11/30 37

Compilation vs. Interpretation
› The compiler versus interpreter implementation is often

fuzzy
– One can view an interpreter as a virtual machine that executes

high-level code
– Java is compiled to bytecode
– Java bytecode is interpreted by the Java virtual machine (JVM)

or translated to machine code by a just-in-time compiler (JIT)
– A processor (CPU) can be viewed as an implementation in

hardware of a virtual machine (e.g. bytecode can be executed in
hardware)

2020/11/30 38

Compilation vs. Interpretation
› Implementation strategies:

– Preprocessor
› Removes comments and white space.
› Groups characters into tokens (keywords, identifiers, numbers,

symbols).
› Expands abbreviations in the style of a macro assembler.
› Identifies higher-level syntactic structures (loops, subroutines).

2020/11/30 39

Preprocessing
› Most C and C++ compilers use a preprocessor to import

header files and expand macros.

2020/11/30 40

Compiler

Preprocessor
Source

Program
Modified Source

Program

Assembly or
Object Code

#include <stdio.h>
#define N 99
…
for (i=0; i<N; i++)

for (i=0; i<99; i++)

The CPP Preprocessor
› Early C++ compilers used the CPP preprocessor to

generated C code for compilation

2020/11/30 41

C Compiler

C++
Preprocessor

C++
Source
Code

C Source
Code

Assembly or
Object Code

Pure Compilation and Static Linking
› Adopted by the typical Fortran systems

› Library routines are separately linked (merged) with the
object code of the program

2020/11/30 42

Compiler
Source

Program
Incomplete

Object Code

LinkerStatic Library
Object Code

_printf
_fget
_fscan
…

extern printf();

Binary
Executable

Compilation, Assembly, and Static Linking
› Facilitates debugging of the compiler

2020/11/30 43

Compiler
Source

Program
Assembly
Program

LinkerStatic Library
Object Code

Binary
Executable

Assembler

_printf
_fget
_fscan
…

extern printf();

Compilation, Assembly, and Dynamic
Linking
› Dynamic libraries (DLL, .so, .dylib) are linked at run-

time by the OS (via stubs in the executable)

2020/11/30 44

Compiler
Source

Program
Assembly
Program

Incomplete
Executable

Input
Output

Assembler

Shared Dynamic Libraries
_printf, _fget, _fscan, …

extern printf();

Compilation vs. Interpretation
› Implementation strategies:

– Dynamic and Just-in-Time Compilation
› In some cases a programming system may deliberately delay

compilation until the last possible moment.
– Lisp or Prolog invoke the compiler on the fly, to translate newly

created source into machine language, or to optimize the code for
a particular input set.

– The Java language definition defines a machine-independent
intermediate form known as byte code. Byte code is the standard
format for distribution of Java programs.

– The main C# compiler produces .NET Common Intermediate
Language (CIL), which is then translated into machine code
immediately prior to execution.

2020/11/30 45

How Java does it

2020/11/30 46

The translator can be a compiler or an
interpreter. It is considered to be a compiler if:
1. There is a thorough analysis of the program
2. The transformation is non-trivial.

The Virtual Machine acts as an interpreter.

JIT Compilers

2020/11/30 47

Compiler/
Interpreter

Source
Program

Bytecode or IL
Representation

Machine
Language

JIT Compiler Bytecode
Interpreter

Input Output

Input

Output

Compilation vs. Interpretation
› Compilers exist for some interpreted languages, but

they aren't pure:
– Selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.
– Interpretation of parts of code, at least, is still necessary for

reasons above.

› Unconventional compilers
– Text formatters.
– Silicon compilers.
– Query language processors.

2020/11/30 48

A Typical
Compilation Process
› Try g++ with –v, -E, -S

flags

2020/11/30 49

Source program with macros

Preprocessor

Source program

Compiler

Target assembly program

assembler

Relocatable machine code

linker

Absolute machine code

Compiler Front- and Back-end

2020/11/30 50

Semantic Analysis
and Intermediate
Code Generation

Scanner
(lexical analysis)

Parser
(syntax analysis)

Source program (character stream)

Tokens

Parse tree

Fr
on

t e
nd

an
al

ys
is

Machine-
Independent Code

Improvement

Target Code
Generation

Machine-Specific
Code Improvement

Modified intermediate form

Assembly or object code

Modified assembly or object code

Abstract syntax tree or
other intermediate form

B
ac

k
en

d
sy

nt
he

si
s

An Overview of Compilation
› Scanning:

– Divides the program into "tokens", which are the smallest
meaningful units; this saves time, since character-by-character
processing is slow.

– We can tune the scanner better if its job is simple; it also
saves complexity (lots of it) for later stages.

– You can design a parser to take characters instead of tokens as
input, but it isn't pretty.

– Scanning is recognition of a regular language, e.g., via DFA.

2020/11/30 51

› Lexical analysis breaks up a program into tokens
– Grouping characters into non-separatable units (tokens)
– Changing a stream to characters to a stream of tokens

Scanner: Lexical Analysis

2020/11/30 52

program gcd (input, output);
var i, j : integer;
begin
read (i, j);
while i <> j do
if i > j then i := i - j else j := j - i;

writeln (i)
end.

program gcd (input , output) ;
var i , j : integer ; begin
read (i , j) ; while
i <> j do if i > j
then i := i - j else j
:= i - i ; writeln (i
) end .

› Recognize structures without regard to meaning and
groups them into tokens.

› The purpose of the scanner is to simplify the parser by
reducing the size of the input.

Scanner: Lexical Analysis

2020/11/30 53

› Lexical analyzer: reads input characters and produces a
sequence of tokens as output (nexttoken()).
– Trying to understand each element in a program.
– Token: a group of characters having a collective meaning.

› const pi = 3.14159;

› Token 1: (const, -)
› Token 2: (identifier, ‘pi’)
› Token 3: (=, -)
› Token 4: (realnumber, 3.14159)
› Token 5: (;, -)

Lexical Analysis

2020/11/30 54

Interaction of Lexical Analyzer with Parser

2020/11/30 55

Lexical
analyzer

symbol
table

parserSource
program

token

Nexttoken()

› Parsing is recognition of a context-free language, e.g.,
via push down automata (PDA).
– Parsing discovers the "context free" structure of the program.
– Informally, it finds the structure you can describe with syntax

diagrams (the "circles and arrows" in a Pascal manual).

An Overview of Compilation

2020/11/30 56

› Checks whether the token stream meets the grammatical
specification of the language and generates the syntax
tree.
– A syntax error is produced by the compiler when the program

does not meet the grammatical specification.
– For grammatically correct program, this phase generates an

internal representation that is easy to manipulate in later phases
› Typically a syntax tree (also called a parse tree).

› A grammar of a programming language is typically
described by a context free grammar, which also defines
the structure of the parse tree.

Parser: Syntax Analysis

2020/11/30 57

› The Syntax analysis catches all malformed statements.

› The parse tree is sometimes called a concrete syntax tree
because it contains how all tokens are derived.

› Much of this information is extraneous for the “meaning”
of the code (e.g., the only purpose of “;” is to end a
statement).

Parser: Syntax Analysis

2020/11/30 58

› Parsing organizes the tokens into a context-free
grammar (i.e., syntax).

Parser: Syntax Analysis

2020/11/30 59

› A context-free grammar defines the syntax of a
programming language

› The syntax defines the syntactic categories for language
constructs
– Statements, Expressions, Declarations

› Categories are subdivided into more detailed categories
– A Statement is a

› For-statement
› If-statement
› Assignment

Context-Free Grammars

2020/11/30 60

<statement> ::= <for-statement> | <if-statement> | <assignment>
<for-statement> ::= for (<expression> ; <expression> ; <expression>) <statement>
<assignment> ::= <identifier> := <expression>

A Syntax Diagram
of Python’s if-then-else Statement

2014/8/29 61

Syntax Diagrams Describing the Structure
of a Simple Algebraic Expression

2014/8/29 62

Expression -> Term Expression | Term OP1 Expression

Term -> Factor Term | Factor OP2 Term

Term -> x | y | z

OP1 -> + | -

OP2 -> * | /

Syntax Diagrams Describing the Structure
of a Simple Algebraic Expression

2014/8/29 63

The Parse Tree for the String x + y * z
Based on the Syntax Diagrams

2014/8/29 64

Operator precedence

2014/8/29 65

Two Distinct Parse Trees for the Statement:
if B1 then if B2 then S1 else S2

2014/8/29 66

› Total 69 production rules with 201 top alternatives
and 806 symbols.

› Vocabulary: 155 = 73 nonterminals + 82 terminals + 0 labels
+ 0 markers.

› Total 82 terminal symbols:
– 36 keywords

("typedef", "extern", "static" 5, "auto", "register", "void", "char", "s
hort", "int", "long", "float", "double", "signed", "unsigned", "_Bool
", "_Complex", "struct", "union", "const", "restrict", "volatile", "siz
eof" 2, "enum" 3, "inline", "case", "default", "if" 2, "else", "switch", "
while" 2, "do", "for" 2, "goto", "continue", "break", "return")

– 46 signs
("{" 8, "}" 8, ";" 11, "," 12, ":" 5, "*" 6, "(" 18, ")" 18, "[" 10, "]" 10, "?", "|
|", "&&", "|", "^", "&" 2, "==", "!=", "<", ">", "<=", ">=", "<<",
">>", "+" 2, "-" 2, "/", "%", "++" 2, "--" 2, "." 2, "-

>", "...", "=" 4, "~", "!", "*=", "/=", "%=", "+=", "-
=", "<<=", ">>=", "&=", "^=", "|=").

C99 language grammar

2014/8/29 67

https://gist.github.com/codebrainz/2933703

C99 language grammar

2014/8/29 68

A Pascal Example

2020/11/30 69

program gcd(input, output);
var i, j: integer;
begin

read(i,j); // get i & j from read
while i<>j do

if i>j then i := i-j
else j := j-1;

writeln(i)
end.

› Syntax Tree
– GCD Program Parse Tree

Parsing Examples

2020/11/30 70

An Overview of Compilation
› Semantic analysis is the discovery of meaning in the

program.
– The compiler actually does what is called STATIC semantic

analysis. That's the meaning that can be figured out at compile
time.

– Some things (e.g., array subscript out of bounds) can't be
figured out until run time. Things like that are part of the
program's DYNAMIC semantics.

2020/11/30 71

Semantic Analysis
› Semantic analysis discovers the meaning of a program

by creating an abstract syntax tree that removes
“extraneous” tokens.

› To do this, the analyzer builds & maintains a symbol
table to map identifiers to information known about it.
(i.e., scope, internal structure, etc...)

› By using the symbol table, the semantic analyzer can
catch problems not caught by the parser.
– Identifiers are declared before used
– Subroutine calls provide correct number and type of arguments.

2020/11/30 72

Semantic Analysis

2020/11/30 73

Semantic Analysis
› Not all semantic rules can be checked at compile time.

– Those that can are called static semantics of the language.
– Those that cannot are called dynamic semantics of the language.

› Arithmetic operations do not overflow.
› Array subscripts expressions lie within the bounds of the array.

2020/11/30 74

Semantic Analysis
› Semantic analysis is applied by a compiler to discover

the meaning of a program by analyzing its parse tree or
abstract syntax tree.

› A program without grammatical errors may not always
be correct program.
– pos = init + rate * 60

– What if pos is a class while init and rate are integers?

– This kind of errors cannot be found by the parser
– Semantic analysis finds this type of error and ensure that the

program has a meaning.

2020/11/30 75

Semantic Analysis
› Static semantic checks (done by the compiler) are

performed at compile time
– Type checking
– Every variable is declared before used
– Identifiers are used in appropriate contexts
– Check subroutine call arguments
– Check labels

2020/11/30 76

Semantic Analysis
› Dynamic semantic checks are performed at run time,

and the compiler produces code that performs these
checks
– Array subscript values are within bounds
– Arithmetic errors, e.g. division by zero
– Pointers are not dereferenced unless pointing to valid object
– A variable is used but hasn't been initialized
– When a check fails at run time, an exception is raised

2020/11/30 77

An Overview of Compilation
› Intermediate form (IF) done after semantic analysis (if

the program passes all checks)
– IFs are often chosen for machine independence, ease of

optimization, or compactness (these are somewhat
contradictory).

– They often resemble machine code for some imaginary
idealized machine; e.g. a stack machine, or a machine with
arbitrarily many registers

– Many compilers actually move the code through more than
one IF.

2020/11/30 78

Code Generation and Intermediate Code
Forms
› A typical intermediate

form of code produced by
the semantic analyzer is
an abstract syntax tree
(AST)

› The AST is annotated
with useful information
such as pointers to the
symbol table entry of
identifiers

2020/11/30 79

Example AST for the
gcd program in Pascal

An Overview of Compilation
› Optimization takes an intermediate-code program and

produces another one that does the same thing faster, or
in less space.
– The term is a misnomer; we just improve code
– The optimization phase is optional.

› Code generation phase produces assembly language or
(sometime) relocatable machine language.

2020/11/30 80

Optimization
› The process so far will produce correct code, but it

may not be fast.

› Optimization will adjust the code to improve
performance.
– A possible machine-independent optimization would be to keep

the variables 𝑖𝑖 and 𝑗𝑗 in registers throughout the main loop.
– A possible machine-specific optimization would be to assign the

variables 𝑖𝑖 and 𝑗𝑗 to specific registers.

2020/11/30 81

Target Code Generation and Optimization
› From the machine-independent form assembly or object

code is generated by the compiler.
MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

› This machine-specific code is optimized to exploit
specific hardware features.

2020/11/30 82

An Object-oriented Approach to the
Translation Process

2014/8/29 83

› Object: Active program unit containing both data and
procedures.

› Class: A template from which objects are constructed.

› An object is called an instance of the class.

Objects and Classes

2014/8/29 84

The Structure of a Class Describing a Laser
Weapon in a Computer Game

2014/8/29 85

› Instance Variable: Variable within an object.
– Holds information within the object.

› Method: Procedure within an object.
– Describes the actions that the object can perform.

› Constructor: Special method used to initialize a new
object when it is first constructed.

› Destructors: Special method used to de-initialize a
existing object when it is removed.

Components of an Object

2014/8/29 86

A Class with a Constructor

2014/8/29 87

› Encapsulation: A way of restricting access to the
internal components of an object.
– Private
– Public
– (Protected)
– (Friend)

Object Integrity

2014/8/29 88

Our LaserClass Definition Using
Encapsulation as it Would Appear in a Java or
C# Program

2014/8/29 89

› Inheritance: Allows new classes to be defined in terms
of previously defined classes.

› Polymorphism: Allows method calls to be interpreted
by the object that receives the call.

Additional Object-oriented Concepts

2014/8/29 90

› Parallel (or concurrent) processing: simultaneous
execution of multiple processes.
– True concurrent processing requires multiple CPUs.

› Or called cores, threads.
– Can be simulated using time-sharing with a single CPU.

Programming Concurrent Activities

2014/8/29 91

Spawning Threads (Processes)

2014/8/29 92

› Mutual Exclusion: A method for ensuring that data can
be accessed by only one process at a time.

› Monitor: A data item augmented with the ability to
control access to itself.

Controlling Access to Data

2014/8/29 93

› Resolution: Combining two or more statements to
produce a new statement (that is a logical consequence
of the originals).
– Example: (P OR Q) AND (R OR ¬Q)

resolves to (P OR R)

– Resolvent: A new statement deduced by resolution
– Clause form: A statement whose elementary components are

connected by the Boolean operation OR.

› Unification: Assigning a value to a variable so that two
statements become “compatible.”

Declarative Programming

2014/8/29 94

Resolving the Statements (P OR Q) and
(R OR ¬Q) to Produce (P OR R)

2014/8/29 95

Resolving the Statements (P OR Q), (R
OR ¬Q), ¬R, and ¬P

2014/8/29 96

› Fact: A Prolog statement establishing a fact
– Consists of a single predicate
– Form: predicateName(arguments).

› Example: parent(bill, mary).

› Rule: A Prolog statement establishing a general rule
– Form: conclusion :- premise.

› :- means “if”
– Example: wise(X) :- old(X).

– Example: faster(X,Z) :- faster(X,Y), faster(Y,Z).

Prolog

2014/8/29 97

	Introduction to Computer Science
	Chapter 6: �Programming Languages
	投影片編號 3
	How many programming languages are there?
	The Evolution of Programming Paradigms
	A Function for Checkbook Balancing Constructed from Simpler Functions
	Traditional Programming Concepts
	The Composition of a Typical Imperative Program or Program Unit
	Data Types
	Variables and Data types
	Data Structure
	A Two-dimensional Array with Two Rows and Nine Columns
	The Conceptual Structure of the Aggregate type Employee
	Assignment Statements
	Control Statements
	Control Statements (continued)
	Control Statements (continued)
	Control Statements (continued)
	The for Loop Structure and its Representation in C++, C#, and Java
	Comments
	Legend never dies
	Procedural Units
	The Flow of Control Involving a Function
	The Function ProjectPopulation Written in the Programming Language C
	Executing the Function Demo and Passing Parameters by Value
	Executing the Function Demo and Passing Parameters by Reference
	The Fruitful Function CylinderVolume Written in the Programming Language C
	Language Implementation
	The Translation Process
	Compilation vs. Interpretation
	Compilation
	Cross Compilation
	Compilation vs. Interpretation
	Interpretation
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Preprocessing
	The CPP Preprocessor
	Pure Compilation and Static Linking
	Compilation, Assembly, and Static Linking
	Compilation, Assembly, and Dynamic Linking
	Compilation vs. Interpretation
	How Java does it
	JIT Compilers
	Compilation vs. Interpretation
	A Typical Compilation Process
	Compiler Front- and Back-end
	An Overview of Compilation
	Scanner: Lexical Analysis
	Scanner: Lexical Analysis
	Lexical Analysis
	Interaction of Lexical Analyzer with Parser
	An Overview of Compilation
	Parser: Syntax Analysis
	Parser: Syntax Analysis
	Parser: Syntax Analysis
	Context-Free Grammars
	A Syntax Diagram �of Python’s if-then-else Statement
	Syntax Diagrams Describing the Structure of a Simple Algebraic Expression
	Syntax Diagrams Describing the Structure of a Simple Algebraic Expression
	The Parse Tree for the String x + y * z Based on the Syntax Diagrams
	Operator precedence
	Two Distinct Parse Trees for the Statement:�if B1 then if B2 then S1 else S2
	C99 language grammar
	C99 language grammar
	A Pascal Example
	Parsing Examples
	An Overview of Compilation
	Semantic Analysis
	Semantic Analysis
	Semantic Analysis
	Semantic Analysis
	Semantic Analysis
	Semantic Analysis
	An Overview of Compilation
	Code Generation and Intermediate Code Forms
	An Overview of Compilation
	Optimization
	Target Code Generation and Optimization
	An Object-oriented Approach to the Translation Process
	Objects and Classes
	The Structure of a Class Describing a Laser Weapon in a Computer Game
	Components of an Object
	A Class with a Constructor
	Object Integrity
	Our LaserClass Definition Using Encapsulation as it Would Appear in a Java or C# Program
	Additional Object-oriented Concepts
	Programming Concurrent Activities
	Spawning Threads (Processes)
	Controlling Access to Data
	Declarative Programming
	Resolving the Statements (P OR Q) and (R OR ¬Q) to Produce (P OR R)
	Resolving the Statements (P OR Q), (R OR ¬Q), ¬R, and ¬P
	Prolog

