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Chapter 6: 
Programming Languages
“ If debugging is the process of removing software bugs, then programming 
must be the process of putting them in. ” 

- Edsger Dijkstra



› 6.1 Historical Perspective

› 6.2 Traditional Programming 
Concepts

› 6.3 Procedural Units

› 6.4 Language Implementation

› 6.5 Object Oriented Programming

› 6.6 Programming Concurrent 
Activities

› 6.7 Declarative Programming



› 8945 ! (Since 18th century)
– https://hopl.info/

› Languages still in use can be less than 500.

How many programming languages are 
there?
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The Evolution of Programming Paradigms
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A Function for Checkbook Balancing 
Constructed from Simpler Functions
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› High-level languages (C, C++, Java, C#, FORTRAN) 
include many kinds of abstractions
– Simple: constants, literals, variables
– Complex: statements, expressions, control
– Esoteric: procedures, modules, libraries

Traditional Programming Concepts



The Composition of a Typical Imperative 
Program or Program Unit
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› Integer: Whole numbers

› Real (float): Numbers with fractions

› Character: Symbols

› Boolean: True/false

Data Types
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float Length, Width;

int Price, Total, Tax;

char Symbol;

int WeightLimit = 100;

Variables and Data types
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› Conceptual shape or arrangement of data

› A common data structure is the array
– In C

int Scores[2][9];

– In FORTRAN
INTEGER Scores(2,9)

Data Structure
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A Two-dimensional Array with Two Rows 
and Nine Columns
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The Conceptual Structure of the Aggregate 
type Employee

struct {

char  Name[25];

int   Age;

float SkillRating;

} Employee;
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› In C, C++, C#, Java
Z = X + y;

› In Ada
Z := X + y;

› In APL (A Programming Language)
Z ← X + y

Assignment Statements
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› Go to statement
goto 40

20   Evade()
goto 70

40   if (KryptoniteLevel < LethalDose) then goto 60
goto 20

60   RescueDamsel()
70   ...

› As a single statement
if (KryptoniteLevel < LethalDose):

RescueDamsel()
else:

Evade()

Control Statements
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› If in Python
if (condition):

statementA
else:

statementB

› In C, C++, C#, and Java
if (condition) statementA; else statementB;

› In Ada
IF condition THEN

statementA; 
ELSE

statementB;
END IF;

Control Statements (continued)
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› While in Python
while (condition):

body

› In C, C++, C#, and Java
while (condition) 
{ body }

› In Ada
WHILE condition LOOP

body 
END LOOP;

Control Statements (continued)
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› Switch statement in C, C++, C#, and Java
switch (variable) { 

case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default:  statementD; }

› In Ada
CASE variable IS

WHEN 'A'=> statementA; 
WHEN 'B'=> statementB; 
WHEN 'C'=> statementC; 
WHEN OTHERS=> statementD; 

END CASE;

Control Statements (continued)
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The for Loop Structure and its 
Representation in C++, C#, and Java
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› Explanatory statements within a program

› Helpful when a human reads a program

› Ignored by the compiler

/* This is a comment in C/C++/Java. */

// This is a comment in C/C++/Java.

<!-- This is a comment -->

% This is a comment in LaTeX

Comments
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Legend never dies
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› Many terms for this concept:
– Subprogram, subroutine, procedure, method, 

function.

› Unit begins with the function’s header.

› Local versus Global Variables.

› Formal versus Actual Parameters.

› Passing parameters by value versus reference.

Procedural Units
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The Flow of Control Involving a Function
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Caller

Callee



The Function ProjectPopulation
Written in the Programming Language C

2014/8/29 24



Executing the Function Demo and Passing 
Parameters by Value
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Executing the Function Demo and Passing 
Parameters by Reference
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The Fruitful Function CylinderVolume
Written in the Programming Language C
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› The process of converting a program written in a high-
level language into a machine-executable form.
– The Lexical Analyzer recognizes which strings of symbols 

represent a single entity, or token. 
– The Parser groups tokens into statements, using syntax 

diagrams to make parse trees.  
– The Code Generator constructs machine-language instructions 

to implement the statements.

Language Implementation



The Translation Process
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Compilation vs. Interpretation
› Compilation vs. interpretation

– Not opposites.
– Not a clear-cut distinction.

› Pure Compilation
– The compiler translates the high-level source program into an 

equivalent target program (typically in machine language).
› The “target program” is called the object code.
› You translate once and run many times.

2020/11/30 30



Compilation
› Compilation is the conceptual process of translating 

source code into a CPU-executable binary target code

› Compiler runs on the same platform X as the target code

2020/11/30 31
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Cross Compilation
› Compiler runs on platform X, target code runs on 

platform Y
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Compilation vs. Interpretation
› Pure Interpretation

– Interpreter stays around for the execution of the program.
– Interpreter is the locus of control during execution.
– You translate for each run.
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Interpretation
› Interpretation is the conceptual process of running high-

level code by an interpreter
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Compilation vs. Interpretation
› Interpretation:

– Greater flexibility.
– Better diagnostics (error messages), easier to debug.

› Compilation
– Better performance.
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Compilation vs. Interpretation
› Compilers “try to be as smart as possible” to fix 

decisions that can be taken at compile time to avoid to 
generate code that makes this decision at run time
– Type checking at compile time vs. runtime
– Static allocation
– Static linking
– Code optimization

› Compilation leads to better performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features
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Compilation vs. Interpretation
› Benefit of interpretation?

– Interpretation facilitates interactive debugging and testing
› Interpretation leads to better diagnostics of a programming 

problem
› Procedures can be invoked from command line by a user
› Variable values can be inspected and modified by a user

– Some programming languages cannot be purely compiled into 
machine code alone
› Some languages allow programs to rewrite/add code to the code 

base dynamically
› Some languages allow programs to translate data to code for 

execution (interpretation)
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Compilation vs. Interpretation
› The compiler versus interpreter implementation is often 

fuzzy
– One can view an interpreter as a virtual machine that executes 

high-level code
– Java is compiled to bytecode
– Java bytecode is interpreted by the Java virtual machine (JVM) 

or translated to machine code by a just-in-time compiler (JIT)
– A processor (CPU) can be viewed as an implementation in 

hardware of a virtual machine (e.g. bytecode can be executed in 
hardware)
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Compilation vs. Interpretation
› Implementation strategies:

– Preprocessor
› Removes comments and white space.
› Groups characters into tokens (keywords, identifiers, numbers, 

symbols).
› Expands abbreviations in the style of a macro assembler.
› Identifies higher-level syntactic structures (loops, subroutines).
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Preprocessing
› Most C and C++ compilers use a preprocessor to import 

header files and expand macros.
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#define N 99
…
for (i=0; i<N; i++)

for (i=0; i<99; i++)



The CPP Preprocessor
› Early C++ compilers used the CPP preprocessor to 

generated C code for compilation
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Pure Compilation and Static Linking
› Adopted by the typical Fortran systems

› Library routines are separately linked (merged) with the 
object code of the program
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Compilation, Assembly, and Static Linking
› Facilitates debugging of the compiler
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Compilation, Assembly, and Dynamic 
Linking
› Dynamic libraries (DLL, .so, .dylib) are linked at run-

time by the OS (via stubs in the executable)
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Compilation vs. Interpretation
› Implementation strategies:

– Dynamic and Just-in-Time Compilation
› In some cases a programming system may deliberately delay 

compilation until the last possible moment.
– Lisp or Prolog invoke the compiler on the fly, to translate newly 

created source into machine language, or to optimize the code for 
a particular input set.

– The Java language definition defines a machine-independent 
intermediate form known as byte code. Byte code is the standard 
format for distribution of Java programs.

– The main C# compiler produces .NET Common Intermediate 
Language (CIL), which is then translated into machine code 
immediately prior to execution.
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How Java does it

2020/11/30 46

The translator can be a compiler or an
interpreter. It is considered to be a compiler if:
1. There is a thorough analysis of the program
2. The transformation is non-trivial.

The Virtual Machine acts as an interpreter.



JIT Compilers
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Compilation vs. Interpretation
› Compilers exist for some interpreted languages, but 

they aren't pure:
– Selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.  
– Interpretation of parts of code, at least, is still necessary for 

reasons above.

› Unconventional compilers
– Text formatters.
– Silicon compilers.
– Query language processors.
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A Typical 
Compilation Process
› Try g++ with –v, -E, -S 

flags 
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Compiler Front- and Back-end
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An Overview of Compilation
› Scanning:

– Divides the program into "tokens", which are the smallest 
meaningful units; this saves time, since character-by-character 
processing is slow.

– We can tune the scanner better if its job is simple; it also 
saves complexity (lots of it) for later stages.

– You can design a parser to take characters instead of tokens as 
input, but it isn't pretty.

– Scanning is recognition of a regular language, e.g., via DFA.
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› Lexical analysis breaks up a program into tokens
– Grouping characters into non-separatable units (tokens)
– Changing a stream to characters to a stream of tokens

Scanner: Lexical Analysis
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program gcd (input, output);
var i, j : integer;
begin
read (i, j);
while i <> j do
if i > j then i := i - j else j := j - i;

writeln (i)
end.

program gcd   (    input  ,    output    )      ;
var i     ,    j      :    integer   ;      begin
read     (     i    ,      j    )         ;      while
i        <>    j    do     if i         >      j
then    i     :=   i      - j         else  j
:=       i     - i      ; writeln   (      i
)        end   .



› Recognize structures without regard to meaning and 
groups them into tokens.

› The purpose of the scanner is to simplify the parser by 
reducing the size of the input.

Scanner: Lexical Analysis
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› Lexical analyzer: reads input characters and produces a 
sequence of tokens as output (nexttoken()).
– Trying to understand each element in a program.
– Token: a group of characters having a collective meaning. 

› const pi = 3.14159;

› Token 1: (const, -)
› Token 2: (identifier, ‘pi’)
› Token 3: (=, -)
› Token 4: (realnumber, 3.14159)
› Token 5: (;, -)

Lexical Analysis
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Interaction of Lexical Analyzer with Parser
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› Parsing is recognition of a context-free language, e.g., 
via push down automata (PDA).
– Parsing discovers the "context free" structure of the program.
– Informally, it finds the structure you can describe with syntax 

diagrams (the "circles and arrows" in a Pascal manual).

An Overview of Compilation
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› Checks whether the token stream meets the grammatical  
specification of the language and generates the syntax 
tree.
– A syntax error is produced by the compiler when the program 

does not meet the grammatical specification.
– For grammatically correct program, this phase generates an 

internal representation that is easy to manipulate in later phases
› Typically a syntax tree (also called a parse tree).

› A grammar of a programming language is typically 
described by a context free grammar, which also defines 
the structure of the parse tree.

Parser: Syntax Analysis
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› The Syntax analysis catches all malformed statements.

› The parse tree is sometimes called a concrete syntax tree 
because it contains how all tokens are derived.

› Much of this information is extraneous for the “meaning” 
of the code (e.g., the only purpose of “;” is to end a 
statement).

Parser: Syntax Analysis

2020/11/30 58



› Parsing organizes the tokens into a context-free 
grammar (i.e., syntax).

Parser: Syntax Analysis
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› A context-free grammar defines the syntax of a 
programming language

› The syntax defines the syntactic categories for language 
constructs
– Statements, Expressions, Declarations

› Categories are subdivided into more detailed categories
– A Statement is a

› For-statement
› If-statement
› Assignment

Context-Free Grammars
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<statement> ::= <for-statement> | <if-statement> | <assignment>
<for-statement> ::= for ( <expression> ; <expression> ; <expression> ) <statement>
<assignment> ::= <identifier> := <expression>



A Syntax Diagram 
of Python’s if-then-else Statement
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Syntax Diagrams Describing the Structure 
of a Simple Algebraic Expression
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Expression -> Term Expression | Term OP1 Expression

Term -> Factor Term | Factor OP2 Term

Term -> x | y | z

OP1 -> + | -

OP2 -> * | /

Syntax Diagrams Describing the Structure 
of a Simple Algebraic Expression
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The Parse Tree for the String x + y * z 
Based on the Syntax Diagrams
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Operator precedence
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Two Distinct Parse Trees for the Statement:
if B1 then if B2 then S1 else S2
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› Total 69 production rules with 201 top alternatives 
and 806 symbols.

› Vocabulary: 155 = 73 nonterminals + 82 terminals + 0 labels 
+ 0 markers.

› Total 82 terminal symbols:
– 36 keywords 

("typedef", "extern", "static" 5, "auto", "register", "void", "char", "s
hort", "int", "long", "float", "double", "signed", "unsigned", "_Bool
", "_Complex", "struct", "union", "const", "restrict", "volatile", "siz
eof" 2, "enum" 3, "inline", "case", "default", "if" 2, "else", "switch", "
while" 2, "do", "for" 2, "goto", "continue", "break", "return")

– 46 signs 
("{" 8, "}" 8, ";" 11, "," 12, ":" 5, "*" 6, "(" 18, ")" 18, "[" 10, "]" 10, "?", "|
|", "&&", "|", "^", "&" 2, "==", "!=", "<", ">", "<=", ">=", "<<",
">>", "+" 2, "-" 2, "/", "%", "++" 2, "--" 2, "." 2, "-

>", "...", "=" 4, "~", "!", "*=", "/=", "%=", "+=", "-
=", "<<=", ">>=", "&=", "^=", "|=").

C99 language grammar
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https://gist.github.com/codebrainz/2933703



C99 language grammar
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A Pascal Example
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program gcd(input, output);
var i, j: integer;
begin

read(i,j); // get i & j from read
while i<>j do

if i>j then i := i-j
else j := j-1;

writeln(i)
end.



› Syntax Tree
– GCD Program Parse Tree

Parsing Examples
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An Overview of Compilation
› Semantic analysis is the discovery of meaning in the 

program.
– The compiler actually does what is called STATIC semantic 

analysis. That's the meaning that can be figured out at compile 
time.

– Some things (e.g., array subscript out of bounds) can't be 
figured out until run time.  Things like that are part of the 
program's DYNAMIC semantics.
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Semantic Analysis
› Semantic analysis discovers the meaning of a program 

by creating an abstract syntax tree that removes 
“extraneous” tokens.

› To do this, the analyzer builds & maintains a symbol 
table to map identifiers to information known about it. 
(i.e., scope, internal structure, etc...)

› By using the symbol table, the semantic analyzer can 
catch problems not caught by the parser.
– Identifiers are declared before used
– Subroutine calls provide correct number and type of arguments.
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Semantic Analysis
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Semantic Analysis
› Not all semantic rules can be checked at compile time.

– Those that can are called static semantics of the language.
– Those that cannot are called dynamic semantics of the language.

› Arithmetic operations do not overflow.
› Array subscripts expressions lie within the bounds of the array.
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Semantic Analysis
› Semantic analysis is applied by a compiler to discover 

the meaning of a program by analyzing its parse tree or 
abstract syntax tree.

› A program without grammatical errors may not always 
be correct program.
– pos = init + rate * 60

– What if pos is a class while init and rate are integers?

– This kind of errors cannot be found by the parser
– Semantic analysis finds this type of error and ensure that the 

program has a meaning.
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Semantic Analysis
› Static semantic checks (done by the compiler) are 

performed at compile time
– Type checking
– Every variable is declared before used
– Identifiers are used in appropriate contexts
– Check subroutine call arguments
– Check labels
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Semantic Analysis
› Dynamic semantic checks are performed at run time, 

and the compiler produces code that performs these 
checks
– Array subscript values are within bounds
– Arithmetic errors, e.g. division by zero
– Pointers are not dereferenced unless pointing to valid object
– A variable is used but hasn't been initialized
– When a check fails at run time, an exception is raised
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An Overview of Compilation
› Intermediate form (IF) done after semantic analysis (if 

the program passes all checks)
– IFs are often chosen for machine independence, ease of 

optimization, or compactness (these are somewhat 
contradictory).

– They often resemble machine code for some imaginary 
idealized machine; e.g. a stack machine, or a machine with 
arbitrarily many registers  

– Many compilers actually move the code through more than 
one IF.
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Code Generation and Intermediate Code 
Forms
› A typical intermediate 

form of code produced by 
the semantic analyzer is 
an abstract syntax tree 
(AST)

› The AST is annotated 
with useful information 
such as pointers to the 
symbol table entry of 
identifiers

2020/11/30 79

Example AST for the
gcd program in Pascal



An Overview of Compilation
› Optimization takes an intermediate-code program and 

produces another one that does the same thing faster, or 
in less space.
– The term is a misnomer; we just improve code  
– The optimization phase is optional.

› Code generation phase produces assembly language or 
(sometime) relocatable machine language.
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Optimization
› The process so far will produce correct code, but it 

may not be fast.

› Optimization will adjust the code to improve 
performance.
– A possible machine-independent optimization would be to keep 

the variables 𝑖𝑖 and 𝑗𝑗 in registers throughout the main loop.
– A possible machine-specific optimization would be to assign the 

variables 𝑖𝑖 and 𝑗𝑗 to specific registers.
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Target Code Generation and Optimization
› From the machine-independent form assembly or object 

code is generated by the compiler.
MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

› This machine-specific code is optimized to exploit 
specific hardware features.
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An Object-oriented Approach to the 
Translation Process
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› Object: Active program unit containing both data and 
procedures.

› Class: A template from which objects are constructed.

› An object is called an instance of the class.

Objects and Classes
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The Structure of a Class Describing a Laser 
Weapon in a Computer Game
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› Instance Variable: Variable within an object.
– Holds information within the object.

› Method: Procedure within an object.
– Describes the actions that the object can perform.

› Constructor: Special method used to initialize a new 
object when it is first constructed.

› Destructors: Special method used to de-initialize a 
existing object when it is removed.

Components of an Object
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A Class with a Constructor
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› Encapsulation: A way of restricting access to the 
internal components of an object.
– Private 
– Public
– (Protected)
– (Friend)

Object Integrity
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Our LaserClass Definition Using 
Encapsulation as it Would Appear in a Java or 
C# Program
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› Inheritance: Allows new classes to be defined in terms 
of previously defined classes.

› Polymorphism: Allows method calls to be interpreted 
by the object that receives the call.

Additional Object-oriented Concepts
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› Parallel (or concurrent) processing: simultaneous 
execution of multiple processes.
– True concurrent processing requires multiple CPUs.

› Or called cores, threads.
– Can be simulated using time-sharing with a single CPU.

Programming Concurrent Activities
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Spawning Threads (Processes)
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› Mutual Exclusion: A method for ensuring that data can 
be accessed by only one process at a time.

› Monitor: A data item augmented with the ability to 
control access to itself.

Controlling Access to Data
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› Resolution: Combining two or more statements to 
produce a new statement (that is a logical consequence 
of the originals).
– Example: (P OR Q) AND (R OR ¬Q) 

resolves to (P OR R)

– Resolvent: A new statement deduced by resolution
– Clause form: A statement whose elementary components are 

connected by the Boolean operation OR.

› Unification: Assigning a value to a variable so that two 
statements become “compatible.”

Declarative Programming
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Resolving the Statements (P OR Q) and 
(R OR ¬Q) to Produce (P OR R)
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Resolving the Statements (P OR Q), (R
OR ¬Q), ¬R, and ¬P
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› Fact: A Prolog statement establishing a fact
– Consists of a single predicate
– Form: predicateName(arguments).

› Example: parent(bill, mary).

› Rule: A Prolog statement establishing a general rule
– Form:  conclusion :- premise.

› :- means “if”
– Example: wise(X) :- old(X).

– Example: faster(X,Z) :- faster(X,Y), faster(Y,Z).

Prolog 
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