Introduction to Computer Science

William Hsu
Advanced Computation Laboratory
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

Chapter 5: Algorithms

[^0]
$\sin ^{2512} 3$

> 5.1 The Concept of an Algorithm
, 5.2 Algorithm Representation
> 5.3 Algorithm Discovery
> 5.4 Iterative Structures
> 5.5 Recursive Structures
> 5.6 Efficiency and Correctness

The concept of an algorithm

>Algorithms from previous chapters

- Converting from one base to another
- Correcting errors in data
- Compression
> Many researchers believe that every activity of the human mind is the result of an algorithm

Definition of Algorithm

>An algorithm is an ordered set of unambiguous, executable steps that defines a terminating process.

- Parallel algorithms. (Not step by step)
- Finite.
- Solvable vs unsolvable.
- Effective vs noneffective.
> A Terminating Process
- Culminates with a result
- Can include systems that run continuously
- Hospital systems
- Long Division Algorithm
> A Non-terminating Process
- Does not produce an answer
- Nondeterministic algorithms.

The abstract nature of algorithms

, There is a difference between an algorithm and its representation.

- Analogy: difference between a story and a book
> A Program is a representation of an algorithm.
> A Process is the activity of executing an algorithm.

Algorithm Representation

> Requires well-defined primitives.

- Some form of language. (Natural)
- A collection of primitives constitutes a programming language.
> Is done informally with Pseudocode
- Pseudocode is between natural language and a programming language.

Folding a Bird From a Square Piece of Paper

Origami Primitives

Data Type

> Data Type: A data type is a collection of objects and a set of operations that act on those objects.
, Abstract Data Type: An abstract data type(ADT) is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations.

*Structure:Abstract data type Natural_Number

structure Natural_Number is
objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (INT_MAX) on the computer
functions:
for all $\mathrm{x}, \mathrm{y} \in$ Nat_Number; TRUE, FALSE \in Boolean and where,,$+-<$, and $==$ are the usual integer operations.
Nat_No Zero () ::= 0
Boolean Is_Zero(x) ::= if (x) return FALSE else return TRUE
Nat_No Add(x, y) ::= if $((\mathrm{x}+\mathrm{y})<=$ INT_MAX) return $\mathrm{x}+\mathrm{y}$ else return INT_MAX
Boolean Equal $(\mathrm{x}, \mathrm{y}) \quad::=$ if $(\mathrm{x}==\mathrm{y})$ return TRUE else return FALSE
Nat_No Successor(x) ::= if ($\mathrm{x}==I_{\text {I }}$ _MAX) return x else return $\mathrm{x}+1$
Nat_No Subtract(x, y) ::= if ($\mathrm{x}<\mathrm{y}$) return 0 else return $x-y$
end Natural_Number
$::=$ is defined as

Designing a pseudocode language

> Choose a common programming language
> Loosen some of the syntax rules
> Allow for some natural language
> Use consistent, concise notation
> We will use a Python-like Pseudocode

Pseudocode Primitives

- Assignment

$$
\text { name }=\text { expression }
$$

- Example

Remwi ni ngFunds = Checki ngBal ance + Savi ngsBal ance
> Conditional selection
if (condition) : activity
> Example
if (sal es have decreased):
I ower the price by 5%

Pseudocode Primitives (continued)

> Repeated execution
while (condi tion): body
> Example
while (tickets remmin to be sol d):
sella ticket
> Indentation shows nested conditions
if (not rai ni ng) :
if (temperature $=$ hot):
go swi mming
el se:
pl ay golf
el se:
wat ch tel evi si on

Pseudocode Primitives (continued)

> Define a function def name():
, Example
def ProcessLoan():
> Executing a function

```
if (. . .):
    ProcessLoan()
else:
        RejectApplication()
```


The Procedure Greetings in Pseudocode

 def Greetings():Count $=3$

```
while (Count > 0):
    pri nt(' Hello' )
    Count = Count - 1
```


Pseudocode Primitives (continued)

- Using parameters
def Sort(List):
- Executing Sort on different lists

Sort(the membership list)
Sort(the wedding guest list)

Algorithm discovery

> The first step in developing a program
> More of an art than a skill
> A challenging task

Polya’s Problem Solving Steps

1. Understand the problem.
2. Devise a plan for solving the problem.
3. Carry out the plan.
4. Evaluate the solution for accuracy and its potential as a tool for solving other problems.

Polya's Steps in the Context of Program Development

1. Understand the problem.
2. Get an idea of how an algorithmic function might solve the problem.
3. Formulate the algorithm and represent it as a program.
4. Evaluate the solution for accuracy and its potential as a tool for solving other problems.

Getting a Foot in the Door

> Try working the problem backwards.
, Solve an easier related problem.

- Relax some of the problem constraints.
- Solve pieces of the problem first (bottom up methodology).
> Stepwise refinement: Divide the problem into smaller problems (top-down methodology).

Ages of Children Problem

> Person A is charged with the task of determining the ages of B's three children.

- B tells A that the product of the children's ages is 36.
- A replies that another clue is required.
- B tells A the sum of the children's ages.
- A replies that another clue is needed.
- B tells A that the oldest child plays the piano.
- A tells B the ages of the three children.
>How old are the three children?

Ages of Children Problem

a. Triples whose product is 36

$(1,1,36)$	$(1,6,6)$
$(1,2,18)$	$(2,2,9)$
$(1,3,12)$	$(2,3,6)$
$(1,4,9)$	$(3,3,4)$

b. Sums of triples from part (a)

$$
\begin{array}{l||l}
1+1+36=38 \\
1+2+18=21 & 1+6+6=13 \\
1+3+12=16 \\
1+4+9=14 & 2+2+9=13 \\
2+3+6=11 \\
3+3+4=10
\end{array}
$$

Iterative structures

> A collection of instructions repeated in a looping manner
> Examples include:

- Sequential search algorithm
- Insertion sort algorithm

Measurements

> Criteria

- Is it correct?
- Is it readable?
- ...
> Performance Analysis (machine independent)
- space complexity: storage requirement
- time complexity: computing time
> Performance Measurement (machine dependent)

The Sequential Search Algorithm in Pseudocode

```
def Search (Li st, Target Val ue):
    if (List is empty):
    Decl are search a failure
    el se:
```

 Sel ect the first entry in List to be Test Entry
 while (Target Val ue \(>\) Test Entry and entries remai n):
 Sel ect the next entry in List as TestEntry
 if (Target Val ue \(=\) Test Entry):
 Decl are search a success
 el se:
 Decl are search a failure

Components of Repetitive Control

Initialize: Establish an initial state that will be modified toward the termination condition

Test: Compare the current state to the termination condition and terminate the repetition if equal

Modify: Change the state in such a way that it moves toward the termination condition

Iterative Structures

> Pretest loop:

$$
\begin{aligned}
& \text { whi I e (condition): } \\
& \text { body }
\end{aligned}
$$

> Posttest loop:
repeat:
body until(condition)

The whi I e Loop Structure

The repeat Loop Structure

Sorting the List Fred, Alex, Diana, Byron, and Carol Alphabetically (Insertion Sort)

Sorted list:	Alex
	Byron
	Carol
	Diana
	Fred

The Insertion Sort Algorithm Expressed in Pseudocode

 def Sort(List):$$
N=2
$$

$$
\text { while (} N<=\text { I ength of List): }
$$

Pi vot $=$ Nth entry in List
Remove Nth entry leaving a hole in List while (there is an Entry above the hole and Entry > Pi vot):

Mbve Entry down into the hol e leaving
a hol e in the list above the Entry
Mbve Pi vot into the hole $\mathrm{N}=\mathrm{N}+1$

Recursion

> Repeating the set of instructions as a subtask of itself.
> Multiple activations of the procedure are formed, all but one of which are waiting for other activations to complete.
> Example: The Binary Search Algorithm

Applying Our Strategy to Search a List for the Entry John

A First Draft of the Binary Search Technique

if (List is empty):
Report that the search failed
el se:
Test Entry $=$ middle entry in the List
if (Target Val ue $=$ Test Entry):
Report that the search succeeded
if (Target Val ue < Test Entry):
Search the portion of List preceding Test Entry for Target Val ue, and report the result of that search
if (Target Val ue > Test Ent ry):
Search the portion of List following Test Entry for
Target Val ue, and report the result of t hat search

The Binary Search Algorithm in Pseudocode

```
def Search(Li st, Target Val ue):
    if (List is empty):
        Report that the search failed
    el se:
    Test Entry = mi ddl e entry in the List
    if (Target Val ue = Test Entry):
        Report that the search succeeded
        if (Target Val ue < Test Entry):
        Sublist = portion of List precedi ng TestEntry
        Search(Subl i st, Target Val ue)
    if (Target Val ue > Test Entry):
        Subl ist = portion of List following TestEntry
        Search(Subl i st, Target Val ue)
```


Binary Search Trace of the Pseudocode
 We are here.

```
def Search (List, TargetValue):
    if (List is empty):
        Report that the search failed.
    else:
        TestEntry = the "middle" entry in List
        if (TargetValue == TestEntry):
        Report that the search succeeded.
        if (TargetValue < TestEntry):
        Sublist = portion of List preceding
            TestEntry
        Search(Sublist, TargetValue)
        if (TargetValue > TestEntry):
            Sublist = portion 0; List following
                TestEntry
            Search(Sublist, TargetValue)
```

 List

Binary Search Trace of the Pseudocode
 We are here.

```
```

def Search (List, TargetValue):

```
```

def Search (List, TargetValue):
if (List is empty):
if (List is empty):
Report that the search failed.
Report that the search failed.
else:
else:
TestEntry = the "middle" entry in List
TestEntry = the "middle" entry in List
if (TargetValue == TestEntry):
if (TargetValue == TestEntry):
Report that the search succeeded.
Report that the search succeeded.
if (TargetValue < TestEntry):
if (TargetValue < TestEntry):
Sublist = portion of List preceding
Sublist = portion of List preceding
TestEntry
TestEntry
Search(Sublist, TargetValue)
Search(Sublist, TargetValue)
if (TargetValue > TestEntry):
if (TargetValue > TestEntry):
Sublist = portion 0, >-ist following
Sublist = portion 0, >-ist following
TestEntry
TestEntry
Search(Sublist, TargetValue)

```
```

 Search(Sublist, TargetValue)
    ```
```

 List

Binary Search Trace of the Pseudocode

> def Search (List, TargetValue):
> is Resost is empty):
Report that the search failed.
else:
> TestEntry $=$ the "middle" entry in List
If (TargetValue $==$ Test
> if (TargetValue $=$ TestEntry):
Report that the search succee
> if (Targetvalue < Testentry):
> Sublist = portion of List preceding
TestEntry
> Search (Sublist, TargetValue)
(TargetValue $>$ TestEntry)
> if (Targetvalue $>$ Test tentry):
Sublist $=$ portion
> TestEntry
Search (Sublist, Targetvalue)

Lis
List

We are here.
$\xrightarrow[\text { def Search (List, TargetValue) }]{\text { if }}$
Report that the search failed
else:
else:
TestEntry = the "middle" entry
if (Targetvalue $=$ = Testentry):
Report that the searh suc)
信
Suargetvalue < TestEntry): TestEntry
Search (Subl
Search (Sublist, Targetvalue)
(TargetValue $>$ Test
if (TargetValue Sublist TestEntry):
Subl 1st
Testentry
portion of List followil
Search(Sublist, TargetValue)

List
\qquad

Recursive control

> Requires initialization, modification, and a test for termination (base case)
> Provides the illusion of multiple copies of the function, created dynamically in a telescoping manner
> Only one copy is actually running at a given time, the others are waiting

Spanning trees

> Suppose you have a connected undirected graph.

- Connected: every node is reachable from every other node.
- Undirected: edges do not have an associated direction.
> A spanning tree of the graph is a connected subgraph in which there are no cycles.

A connected, undirected graph

Four of the spanning trees of the graph

Constructing a spanning tree

```
pick an initial node and call it part of the spanning tree
do a search from the initial node:
each time you find a node that is not in the spanning tree, add to the spanning tree both the new node and the edge you followed to get to it
```


An undirected graph

One possible result of a BFS 2starting from top

One possible result of a DFS starting from top

Minimum cost spanning trees

> Suppose you want to supply a set of houses (say, in a new subdivision) with:

- electric power
- water
- sewage lines
- telephone lines
> To keep costs down, you could connect these houses with a spanning tree (of, for example, power lines).
- The houses are not all equal distances apart.
, To reduce costs even further, you could connect the. houses with a minimum-cost spanning tree.

Minimum-cost spanning trees

, Suppose you have a connected undirected graph with a weight (or cost) associated with each edge
> The cost of a spanning tree would be the sum of the costs of its edges
> A minimum-cost spanning tree is a spanning tree that has the lowest cost

A connected, undirected graph

A minimum-cost spanning tree

Finding spanning trees

, There are two basic algorithms for finding minimumcost spanning trees, and both are greedy algorithms
> Kruskal's algorithm: Start with no nodes or edges in the spanning tree, and repeatedly add the cheapest edge that does not create a cycle

- Here, we consider the spanning tree to consist of edges only
> Prim's algorithm: Start with any one node in the spanning tree, and repeatedly add the cheapest edge, and the node it leads to, for which the node is not already in the spanning tree.
- Here, we consider the spanning tree to consist of both nodes and edges

Kruskal's algorithm

T = empty spanning tree;
E = set of edges;
N = number of nodes in graph;
while T has fewer than N - 1 edges \{
remove an edge (v, w) of lowest cost from E if adding (v, w) to T would create a cycle then discard (v, w) else add (v, w) to T
\}
> Finding an edge of lowest cost can be done just by sorting the edges
> Efficient testing for a cycle requires a fairly complex algorithm (UNION-FIND) which we don't cover in this course

Prim's algorithm

T = a spanning tree containing a single node s; $E=$ set of edges adjacent to s; while T does not contain all the nodes \{ remove an edge (v, w) of lowest cost from E if w is already in T then discard edge (v, w) else \{ add edge (v, w) and node w to T add to E the edges adjacent to w \}
\}
> An edge of lowest cost can be found with a priority queue
> Testing for a cycle is automatic

- Hence, Prim's algorithm is far simpler to implement than Kruskal’s algorithm

Mazes

> Typically,

- Every location in a maze is reachable from the starting location
- There is only one path from start to finish
> If the cells are "vertices" and the open doors between cells are "edges," this describes a spanning tree
> Since there is exactly one path between any pair of cells, any cells can be used as "start" and
 "finish"
> This describes a spanning tree

Mazes as spanning trees

, While not every maze is a spanning tree, most can be represented as such
, The nodes are "places" within the maze
, There is exactly one cycle-free path from any node to any other node

Building a maze I

, This algorithm requires two sets of cells

- the set of cells already in the spanning tree, IN
- the set of cells adjacent to the cells in the spanning tree (but not in it themselves), called the FRONTIER
> Start with all walls present

> Pick any cell and put it into IN (red)
> Put all adjacent cells, that aren't in IN, into FRONTIER (blue)

Building a maze II

> Repeatedly do the following:

- Remove any one cell C from FRONTIER and put it in IN
- Erase the wall between C and some one adjacent cell in IN
- Add to FRONTIER all the cells adjacent to C that aren't in IN (or in FRONTIER already)

- Continue until there are no more cells in FRONTIER
- When the maze is complete (or at any time), choose the start and finish cells

Efficiency and correctness

> The choice between efficient and inefficient algorithms can make the difference between a practical solution and an impractical one
> The correctness of an algorithm is determined by reasoning formally about the algorithm, not by testing its implementation

Efficiency

, Measured as number of instructions executed
> Uses big theta notation:
, Example: Insertion sort is in $\Theta\left(n^{2}\right)$
> Incorporates best, worst, and average case analysis

Algorithm Analysis

> Space complexity

- How much space is required
> Time complexity
- How much time does it take to run the algorithm
> Often, we deal with estimates!

Space Complexity

> Space complexity = The amount of memory required by an algorithm to run to completion

- [Core dumps = the most often encountered cause is "dangling pointers"]
, Some algorithms may be more efficient if data completely loaded into memory
- Need to look also at system limitations
- E.g. Classify 2GB of text in various categories [politics, tourism, sport, natural disasters, etc.] - can I afford to load the entire collection?

Space Complexity

1. Fixed part: The size required to store certain data/variables, that is independent of the size of the problem:

- e.g. name of the data collection
- same size for classifying 2GB or 1MB of texts

2. Variable part: Space needed by variables, whose size is dependent on the size of the problem:

- e.g. actual text
- load 2GB of text VS. load 1MB of text

Space Complexity

> $\mathrm{S}(\mathrm{P})=\mathrm{c}+\mathrm{S}$ (instance characteristics)
$-\mathrm{c}=\mathrm{constant}$
> Example:
float summation(const float (\&a)[10], int n)
\{

```
float s = 0;
int i;
for(i = 0; i<n; i++) {
        s+= a[i];
    }
    return s;
```

\}
> Space requirement: one for n , one for a [passed by reference!], one for $\mathrm{i} \rightarrow$ constant space!

Time Complexity

> Often more important than space complexity

- space available (for computer programs!) tends to be larger and larger
- time is still a problem for all of us
> 3-4GHz processors on the market
- still ...
- researchers estimate that the computation of various transformations for 1 single DNA chain for one single protein on 1 TerraHZ computer would take about 1 year to run to completion
> Algorithms running time is an important issue

Running Time

> Suppose the program includes an if-then statement that may execute or not: \rightarrow variable running time
> Typically algorithms are measured by their worst case

Running Time

> The running time of an algorithm varies with the inputs, and typically grows with the size of the inputs.
> To evaluate an algorithm or to compare two algorithms, we focus on their relative rates of growth wrt the increase of the input size.
> The average running time is difficult to determine.
> We focus on the worst case running time

- Easier to analyze
- Crucial to applications such as finance, robotics, and games

Running Time

> Problem: prefix averages

- Given an array X
- Compute the array A such that $\mathrm{A}[\mathrm{i}]$ is the average of elements X[0] ... X[i], for $\mathrm{i}=0 . . \mathrm{n}-1$
> Sol 1
- At each step i, compute the element X[i] by traversing the array A and determining the sum of its elements, respectively the average
> Sol 2
- At each step i update a sum of the elements in the array A
- Compute the element X[i] as sum/I

Big question: Which solution to choose?

Experimental Approach

> Write a program to implement the algorithm.
> Run this program with inputs of varying size and composition.
, Get an accurate measure of the actual running time (e.g. system call date).
> Plot the results.
> Problems?

Limitations of Experimental Studies

> The algorithm has to be implemented, which may take a long time and could be very difficult.
> Results may not be indicative for the running time on other inputs that are not included in the experiments.
> In order to compare two algorithms, the same hardware and software must be used.

Use a Theoretical Approach

> Based on high-level description of the algorithms, rather than language dependent implementations
> Makes possible an evaluation of the algorithms that is independent of the hardware and software environments
\rightarrow Generality

Pseudocode

> High-level description of an algorithm.
> More structured than plain English.
> Less detailed than a program.
> Preferred notation for describing algorithms.
> Hides program design issues.

Example: find the max element of an array

Algorithm $\operatorname{arrayMax}(\mathbf{A}, \mathrm{n})$

Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A

```
    currentMax }\leftarrowA[0
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
    if A[i] > currentMax then
        currentMax }\leftarrowA[i
    return currentMax
```


Primitive Operations

> The basic computations performed by an algorithm
> Identifiable in pseudocode
> Largely independent from the programming language
> Exact definition not important
> Use comments
> Instructions have to be basic enough and feasible!
> Examples:

- Evaluating an expression
- Assigning a value to a variable
- Calling a method
- Returning from a method

Low Level Algorithm Analysis

> Based on primitive operations (low-level computations independent from the programming language)
> E.g.:

- Make an addition = 1 operation
- Calling a method or returning from a method = 1 operation
- Index in an array = 1 operation
- Comparison = 1 operation etc.
> Method: Inspect the pseudo-code and count the number of primitive operations executed by the algorithm

Counting Primitive Operations

> By inspecting the code, we can determine the number of primitive operations executed by an algorithm, as a function of the input size.

```
Algorithm arrayMax(A, n)
    currentMax }\leftarrowA[0
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
```



```
        if A[i]>}>>\mathrm{ currentMax then 
    { increment counter i }
    return currentMax
        Total 7n-1
# operations
    2
2+n
2(n-1)
2(n-1)
        2(\boldsymbol{n}-1)
rem
        2(n-1)
```


Estimating Running Time

> Algorithm arrayMax executes $7 n-1$ primitive operations.
> Let's define

- a := Time taken by the fastest primitive operation
- $b:=$ Time taken by the slowest primitive operation
> Let $T(n)$ be the actual running time of arrayMax. We have

$$
a(7 n-1) \leq T(n) \leq b(7 n-1)
$$

> Therefore, the running time $T(n)$ is bounded by two linear functions.

Growth Rate of Running Time

> Changing computer hardware / software

- Affects $T(n)$ by a constant factor
- Does not alter the growth rate of $T(n)$
> The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Growth Rates

> Growth rates of functions:

- Linear $\approx n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
> In a log-log chart, the slope of the line corresponds to the growth rate of the function

Constant Factors

> The growth rate is not affected by

- constant factors or
- lower-order terms
> Examples
$-10^{2} n+10^{5}$ is a linear function
$-10^{5} n^{2}+10^{8} n$ is a quadratic function

Asymptotic Notation

> Need to abstract further
> Give an "idea" of how the algorithm performs
> n steps vs. $n+5$ steps
> n steps vs. n^{2} steps

Example

$>$ Complexity of $c_{1} n^{2}+c_{2} n$ and $c_{3} n$

- for sufficiently large of value, $c_{3} n$ is faster than $c_{1} n^{2}+c_{2} n$
- for small values of n, either could be faster
> $c_{1}=1, c_{2}=2, c_{3}=100-->c_{1} n^{2}+c_{2} n \leq c_{3} n$ for $n \geq 98$
> $c_{1}=1, c_{2}=2, c_{3}=1000-->c_{1} n^{2}+c_{2} n \leq c_{3} n$ for $n \geq 998$
- break even point
> no matter what the values of c_{1}, c_{2}, and c_{3}, the n beyond which $c_{3} n$ is always faster than $c_{1} n^{2}+c_{2} n$

Problem

> Fibonacci numbers

- $\mathrm{F}[0]=0$
$-\mathrm{F}[1]=1$
$-\mathrm{F}[\mathrm{i}]=\mathrm{F}[\mathrm{i}-1]+\mathrm{F}[\mathrm{i}-2]$ for $\mathrm{i} \geq 2$
> Pseudo-code
> Number of operations

Iterative summing of a list of numbers

float sum(float list[], int n)\{
float tempsum = 0; count++; /* for assignment */
int i;
for (i = 0; i < n; i++) \{
count++; /*for the for loop */
/* for assignment */
tempsum += list[i]; count++;
\}
count++; /* last execution of for */
return tempsum;

```
count++; /* for return */ 2n + 3 steps
```

\}

Asymptotic Notation Big-O

> Definition
$f(n)=O(g(n))$ iff there exist positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all $n, n \geq n_{0}$.
> Examples

$$
\begin{array}{ll}
-3 n+2=O(n) & / * 3 n+2 \leq 4 n \text { for } n \geq 2 * / \\
-3 n+3=O(n) & / * 3 n+3 \leq 4 n \text { for } n \geq 3 * / \\
-100 n+6=O(n) & / * 100 n+6 \leq 101 n \text { for } n \geq 10 * / \\
-10 n^{2}+4 n+2=O\left(n^{2}\right) & / * 10 n 2+4 n+2 \leq 11 n^{2} \text { for } n \geq 5 * / \\
-6 * 2^{n}+n^{2}=O\left(2^{n}\right) & / * 6 * 2^{2}+n^{2} \leq 7 * 2^{n} \text { for } n \geq 4 * /
\end{array}
$$

Common Big-Os

> $O(1)$: constant
> $O(\log n)$
> $O(n)$: linear
> $O(n \log n)$
> $O\left(n^{2}\right)$: quadratic
> $O\left(n^{3}\right)$: cubic
> $O\left(2^{n}\right)$: exponential
> $O\left(n^{n}\right)$: super exponential

Applying the Insertion Sort in a Worst-case Situation

| Initial list | Comparisons made for each pivot | | | | Sorted list |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1st pivot | 2nd pivot | 3rd pivot | 4th pivot | |
| Elaine
 David
 Carol
 Barbara
 Alfred | 1
 Elaine
 David
 Carol
 Barbara
 Alfred | 2 (David | | | Alfred
 Barbara
 Carol
 David
 Elaine |

Graph of the Worst-case Analysis of the Insertion Sort Algorithm

Time required to execute
the algorithm

Graph of the Worst-case Analysis of the Binary Search Algorithm

Time required to execute the algorithm

Software Verification

> Proof of correctness (with formal logic)

- Assertions
> Preconditions
> Loop invariants
> Testing is more commonly used to verify software
> Testing only proves that the program is correct for the test cases used

Chain Separating Problem

> A traveler has a gold chain of seven links.
>He must stay at an isolated hotel for seven nights.
> The rent each night consists of one link from the chain.
> What is the fewest number of links that must be cut so that the traveler can pay the hotel one link of the chain each morning without paying for lodging in advance?

Separating the Chain Using Only Three Cuts

Solving the Problem with Only One Cut

A Wolf, a Goat, and a Cabbage

> A man finds himself on a riverbank with a wolf, a goat, and a head of cabbage. He needs to transport all three to the other side of the river in his boat. However, the boat has room for only the man himself and one other item (either the wolf, the goat, or the cabbage). In his absence, the wolf would eat the goat, and the goat would eat the cabbage. Show how the man can get all these "passengers" to the other side.

Ferrying Soldiers

> A detachment of 25 soldiers must cross a wide and deep river with no bridge in sight. They notice two 12-yearold boys playing in a rowboat by the shore. The boat is so tiny, however, that it can only hold two boys or one soldier. How can the soldiers get across the river and leave the boys in joint possession of the boat? How many times does the boat pass from shore to shore in your algorithm?

A Fake Among Eight Coins

> There are eight identical-looking coins; one of these coins is counterfeit and is known to be lighter than the genuine coins. What is the minimum number of weightings needed to identify the fake coin with a twopan balance scale without weights?

The Assertions Associated with a Typical whi I e Structure

Loop Invariants

```
int j = 9;
for(int i=0; i<10; i++)
j--;
```

> In this example it is true (for every iteration):

- i + j == 9 .
- A weaker invariant that is also true is that $\mathrm{i}>=0$ \&\& $\mathrm{i}<=$ 10.

Loop Invariants

```
i nt nmx(int n, const int a[n]) {
    int m=a[0];
    // m equal s the nmxi mum val ue in a[0...0]
    int i = 1;
    while (i != n) {
            // m equal s the n⿴囗xi mum val ue in a[0...i-1]
            if (m<a[i])
                m=a[i];
                // mequal s the maxi mum val ue in a[0...i]
            +H;
            // mequal s the maxi mum val ue in a[0...i-1]
    }
    // m equal s the maxi mum val ue in a[0...i-1], and i =n
    return m
}
```


[^0]: Oftr alyorithm is any set of detailed instructions which results in a predictable end-statef from a known beginning. Sllyorithms are only as goad as the instructions given, however, and the ressult will be incorrect if the aly orithm is not praperly defined.

