
Introduction to Computer Science

William Hsu
Advanced Computation Laboratory
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

Chapter 5: Algorithms
An algorithm is any set of detailed instructions which results in a predictable end-state from
a known beginning. Algorithms are only as good as the instructions given, however, and
the result will be incorrect if the algorithm is not properly defined.

› 5.1 The Concept of an Algorithm

› 5.2 Algorithm Representation

› 5.3 Algorithm Discovery

› 5.4 Iterative Structures

› 5.5 Recursive Structures

› 5.6 Efficiency and Correctness

› Algorithms from previous chapters
– Converting from one base to another
– Correcting errors in data
– Compression

› Many researchers believe that every activity of the
human mind is the result of an algorithm

The concept of an algorithm

› An algorithm is an ordered set of unambiguous, executable
steps that defines a terminating process.
– Parallel algorithms. (Not step by step)
– Finite.
– Solvable vs unsolvable.
– Effective vs noneffective.

› A Terminating Process
– Culminates with a result
– Can include systems that run continuously
– Hospital systems
– Long Division Algorithm

› A Non-terminating Process
– Does not produce an answer
– Nondeterministic algorithms.

Definition of Algorithm

2014/8/29 5

› There is a difference between an algorithm and its
representation.
– Analogy: difference between a story and a book

› A Program is a representation of an algorithm.

› A Process is the activity of executing an algorithm.

The abstract nature of algorithms

2014/8/29 6

Algorithm Representation

2014/8/29 7

› Requires well-defined primitives.
– Some form of language. (Natural)
– A collection of primitives constitutes a programming language.

› Is done informally with Pseudocode
– Pseudocode is between natural language and a programming

language.

Folding a Bird From a Square Piece of
Paper

2014/8/29 8

Origami Primitives

2014/8/29 9

› Data Type: A data type is a collection of objects and a
set of operations that act on those objects.

› Abstract Data Type: An abstract data type(ADT) is a
data type that is organized in such a way that the
specification of the objects and the operations on the
objects is separated from the representation of the
objects and the implementation of the operations.

Data Type

CHAPTER 1 10

CHAPTER 1 11

*Structure:Abstract data type Natural_Number
structure Natural_Number is

objects: an ordered subrange of the integers starting at zero and ending
at the maximum integer (INT_MAX) on the computer

functions:
for all x, y ∈ Nat_Number; TRUE, FALSE ∈ Boolean
and where +, -, <, and == are the usual integer operations.
Nat_No Zero () ::= 0
Boolean Is_Zero(x) ::= if (x) return FALSE

else return TRUE
Nat_No Add(x, y) ::= if ((x+y) <= INT_MAX) return x+y

else return INT_MAX
Boolean Equal(x,y) ::= if (x== y) return TRUE

else return FALSE
Nat_No Successor(x) ::= if (x == INT_MAX) return x

else return x+1
Nat_No Subtract(x,y) ::= if (x<y) return 0

else return x-y
end Natural_Number ::= is defined as

› Choose a common programming language

› Loosen some of the syntax rules

› Allow for some natural language

› Use consistent, concise notation

› We will use a Python-like Pseudocode

Designing a pseudocode language

2014/8/29 12

• Assignment
name = expression

• Example
RemainingFunds = CheckingBalance +

SavingsBalance

› Conditional selection
if (condition):

activity

› Example
if (sales have decreased):

lower the price by 5%

Pseudocode Primitives

2014/8/29 13

› Repeated execution
while (condition):

body

› Example
while (tickets remain to be sold):

sell a ticket

› Indentation shows nested conditions
if (not raining):

if (temperature == hot):
go swimming

else:
play golf

else:
watch television

Pseudocode Primitives (continued)

2014/8/29 14

› Define a function
def name():

› Example
def ProcessLoan():

› Executing a function
if (. . .):

ProcessLoan()
else:

RejectApplication()

Pseudocode Primitives (continued)

2014/8/29 15

def Greetings():

Count = 3

while (Count > 0):

print('Hello')

Count = Count - 1

The Procedure Greetings in Pseudocode

2014/8/29 16

• Using parameters
def Sort(List):

.

.

• Executing Sort on different lists
Sort(the membership list)

Sort(the wedding guest list)

Pseudocode Primitives (continued)

2014/8/29 17

› The first step in developing a program

› More of an art than a skill

› A challenging task

Algorithm discovery

2014/8/29 18

1. Understand the problem.

2. Devise a plan for solving the problem.

3. Carry out the plan.

4. Evaluate the solution for accuracy and its potential as
a tool for solving other problems.

Polya’s Problem Solving Steps

2014/8/29 19

1. Understand the problem.

2. Get an idea of how an algorithmic function might
solve the problem.

3. Formulate the algorithm and represent it as a program.

4. Evaluate the solution for accuracy and its potential as
a tool for solving other problems.

Polya’s Steps in the Context of Program
Development

2014/8/29 20

› Try working the problem backwards.

› Solve an easier related problem.
– Relax some of the problem constraints.
– Solve pieces of the problem first (bottom up methodology).

› Stepwise refinement: Divide the problem into smaller
problems (top-down methodology).

Getting a Foot in the Door

2014/8/29 21

› Person A is charged with the task of determining the
ages of B’s three children.
– B tells A that the product of the children’s ages is 36.
– A replies that another clue is required.
– B tells A the sum of the children’s ages.
– A replies that another clue is needed.
– B tells A that the oldest child plays the piano.
– A tells B the ages of the three children.

› How old are the three children?

Ages of Children Problem

2014/8/29 22

Ages of Children Problem

2014/8/29 23

› A collection of instructions repeated in a looping
manner

› Examples include:
– Sequential search algorithm
– Insertion sort algorithm

Iterative structures

2014/8/29 24

› Criteria
– Is it correct?
– Is it readable?
– …

› Performance Analysis (machine independent)
– space complexity: storage requirement
– time complexity: computing time

› Performance Measurement (machine dependent)

Measurements

CHAPTER 1 25

def Search (List, TargetValue):

if (List is empty):

Declare search a failure

else:

Select the first entry in List to be TestEntry

while (TargetValue > TestEntry and entries remain):

Select the next entry in List as TestEntry

if (TargetValue == TestEntry):

Declare search a success

else:

Declare search a failure

The Sequential Search Algorithm in
Pseudocode

2014/8/29 26

Components of Repetitive Control

2014/8/29 27

› Pretest loop:
while (condition):

body

› Posttest loop:
repeat:

body
until(condition)

Iterative Structures

2014/8/29 28

The while Loop Structure

2014/8/29 29

The repeat Loop Structure

2014/8/29 30

Sorting the List Fred, Alex, Diana, Byron,
and Carol Alphabetically (Insertion Sort)

2014/8/29 31

def Sort(List):

N = 2

while (N <= length of List):

Pivot = Nth entry in List

Remove Nth entry leaving a hole in List

while (there is an Entry above the

hole and Entry > Pivot):

Move Entry down into the hole leaving

a hole in the list above the Entry

Move Pivot into the hole

N = N + 1

The Insertion Sort Algorithm Expressed in
Pseudocode

2014/8/29 32

› Repeating the set of instructions as a subtask of itself.

› Multiple activations of the procedure are formed, all but
one of which are waiting for other activations to
complete.

› Example: The Binary Search Algorithm

Recursion

2014/8/29 33

Applying Our Strategy to Search a List for
the Entry John

2014/8/29 34

if (List is empty):

Report that the search failed

else:

TestEntry = middle entry in the List

if (TargetValue == TestEntry):

Report that the search succeeded

if (TargetValue < TestEntry):

Search the portion of List preceding TestEntry for

TargetValue, and report the result of that search

if (TargetValue > TestEntry):

Search the portion of List following TestEntry for

TargetValue, and report the result of that search

A First Draft of the Binary Search
Technique

2014/8/29 35

def Search(List, TargetValue):

if (List is empty):

Report that the search failed

else:

TestEntry = middle entry in the List

if (TargetValue == TestEntry):

Report that the search succeeded

if (TargetValue < TestEntry):

Sublist = portion of List preceding TestEntry

Search(Sublist, TargetValue)

if (TargetValue > TestEntry):

Sublist = portion of List following TestEntry

Search(Sublist, TargetValue)

The Binary Search Algorithm in
Pseudocode

2014/8/29 36

Binary Search Trace of the Pseudocode

2014/8/29 37

Binary Search Trace of the Pseudocode

2014/8/29 38

Binary Search Trace of the Pseudocode

2014/8/29 39

› Requires initialization, modification, and a test for
termination (base case)

› Provides the illusion of multiple copies of the function,
created dynamically in a telescoping manner

› Only one copy is actually running at a given time, the
others are waiting

Recursive control

2014/8/29 40

› Suppose you have a connected undirected graph.
– Connected: every node is reachable from every other node.
– Undirected: edges do not have an associated direction.

› A spanning tree of the graph is a connected subgraph in
which there are no cycles.

Spanning trees

2014/8/29 41

A connected,
undirected graph

Four of the spanning trees of the graph

pick an initial node and call it part of the
spanning tree
do a search from the initial node:

each time you find a node that is not in the
spanning tree, add to the spanning tree both the
new node and the edge you followed to get to it

Constructing a spanning tree

2014/8/29 42

An undirected graph One possible
result of a BFS
starting from top

One possible
result of a DFS
starting from top

› Suppose you want to supply a set of houses (say, in a
new subdivision) with:
– electric power
– water
– sewage lines
– telephone lines

› To keep costs down, you could connect these houses
with a spanning tree (of, for example, power lines).
– The houses are not all equal distances apart.

› To reduce costs even further, you could connect the.
houses with a minimum-cost spanning tree.

Minimum cost spanning trees

2014/8/29 43

Minimum-cost spanning trees
› Suppose you have a connected undirected graph with a

weight (or cost) associated with each edge

› The cost of a spanning tree would be the sum of the
costs of its edges

› A minimum-cost spanning tree is a spanning tree that
has the lowest cost

44

A B

E D

F C

16

19

21 11

33 14

18 10

6

5

A connected, undirected graph

A B

E D

F C

16
11

18

6
5

A minimum-cost spanning tree

Finding spanning trees
› There are two basic algorithms for finding minimum-

cost spanning trees, and both are greedy algorithms

› Kruskal’s algorithm: Start with no nodes or edges in
the spanning tree, and repeatedly add the cheapest edge
that does not create a cycle
– Here, we consider the spanning tree to consist of edges only

› Prim’s algorithm: Start with any one node in the
spanning tree, and repeatedly add the cheapest edge, and
the node it leads to, for which the node is not already in
the spanning tree.
– Here, we consider the spanning tree to consist of both nodes and

edges

45

Kruskal’s algorithm
T = empty spanning tree;
E = set of edges;
N = number of nodes in graph;

while T has fewer than N - 1 edges {
remove an edge (v, w) of lowest cost from E
if adding (v, w) to T would create a cycle

then discard (v, w)
else add (v, w) to T

}

› Finding an edge of lowest cost can be done just by sorting the
edges

› Efficient testing for a cycle requires a fairly complex
algorithm (UNION-FIND) which we don’t cover in this
course

46

Prim’s algorithm
T = a spanning tree containing a single
node s;
E = set of edges adjacent to s;
while T does not contain all the nodes {

remove an edge (v, w) of lowest cost from E
if w is already in T then discard edge (v, w)
else {

add edge (v, w) and node w to T
add to E the edges adjacent to w

}

}

› An edge of lowest cost can be found with a priority queue
› Testing for a cycle is automatic

– Hence, Prim’s algorithm is far simpler to implement than Kruskal’s
algorithm

47

Mazes
› Typically,

– Every location in a maze is
reachable from the starting location

– There is only one path from start to
finish

› If the cells are “vertices” and the
open doors between cells are
“edges,” this describes a
spanning tree

› Since there is exactly one path
between any pair of cells, any
cells can be used as “start” and
“finish”

› This describes a spanning tree
48

Mazes as spanning trees
› While not every maze is a

spanning tree, most can
be represented as such

› The nodes are “places”
within the maze

› There is exactly one
cycle-free path from any
node to any other node

49

Building a maze I
› This algorithm requires two

sets of cells
– the set of cells already in the

spanning tree, IN
– the set of cells adjacent to

the cells in the spanning tree
(but not in it themselves),
called the FRONTIER

› Start with all walls present

› Pick any cell and put it into
IN (red)

› Put all adjacent cells, that
aren’t in IN, into
FRONTIER (blue)

50

Building a maze II
› Repeatedly do the following:

– Remove any one cell C from
FRONTIER and put it in IN

– Erase the wall between C
and some one adjacent cell
in IN

– Add to FRONTIER all the
cells adjacent to C that aren’t
in IN (or in FRONTIER
already)

– Continue until there are no
more cells in FRONTIER

– When the maze is complete
(or at any time), choose the
start and finish cells

51

› The choice between efficient and inefficient algorithms
can make the difference between a practical solution and
an impractical one

› The correctness of an algorithm is determined by
reasoning formally about the algorithm, not by testing
its implementation

Efficiency and correctness

2014/8/29 52

› Measured as number of instructions executed

› Uses big theta notation:

› Example: Insertion sort is in Θ(𝑛𝑛2)
› Incorporates best, worst, and average case analysis

Efficiency

2014/8/29 53

› Space complexity
– How much space is required

› Time complexity
– How much time does it take to run the algorithm

› Often, we deal with estimates!

Algorithm Analysis

2014/8/29 54

› Space complexity = The amount of memory required by
an algorithm to run to completion
– [Core dumps = the most often encountered cause is “dangling

pointers”]

› Some algorithms may be more efficient if data
completely loaded into memory
– Need to look also at system limitations
– E.g. Classify 2GB of text in various categories [politics, tourism,

sport, natural disasters, etc.] – can I afford to load the entire
collection?

Space Complexity

2014/8/29 55

1. Fixed part: The size required to store certain
data/variables, that is independent of the size of the
problem:
- e.g. name of the data collection
- same size for classifying 2GB or 1MB of texts

2. Variable part: Space needed by variables, whose size
is dependent on the size of the problem:
- e.g. actual text
- load 2GB of text VS. load 1MB of text

Space Complexity

2014/8/29 56

› S(P) = c + S(instance characteristics)
– c = constant

› Example:
float summation(const float (&a)[10], int n)

{

float s = 0;

int i;

for(i = 0; i<n; i++) {

s+= a[i];

}

return s;

}

› Space requirement: one for n, one for a [passed by
reference!], one for i constant space!

Space Complexity

2014/8/29 57

› Often more important than space complexity
– space available (for computer programs!) tends to be larger and

larger
– time is still a problem for all of us

› 3-4GHz processors on the market
– still …
– researchers estimate that the computation of various

transformations for 1 single DNA chain for one single protein
on 1 TerraHZ computer would take about 1 year to run to
completion

› Algorithms running time is an important issue

Time Complexity

2014/8/29 58

› Suppose the program includes an if-then statement that
may execute or not:  variable running time

› Typically algorithms are measured by their worst case

Running Time

2014/8/29 59

Input

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case

best-case
}average-case?

› The running time of an algorithm varies
with the inputs, and typically grows
with the size of the inputs.

› To evaluate an algorithm or to compare
two algorithms, we focus on their
relative rates of growth wrt the increase
of the input size.

› The average running time is difficult to
determine.

› We focus on the worst case running
time
– Easier to analyze
– Crucial to applications such as finance,

robotics, and games

Running Time

2014/8/29 60

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000
Input Size

best case
average case
worst case

› Problem: prefix averages
– Given an array X
– Compute the array A such that A[i] is the average of elements

X[0] … X[i], for i=0..n-1

› Sol 1
– At each step i, compute the element X[i] by traversing the array

A and determining the sum of its elements, respectively the
average

› Sol 2
– At each step i update a sum of the elements in the array A
– Compute the element X[i] as sum/I

Running Time

2014/8/29 61

Big question: Which solution to choose?

› Write a program to
implement the algorithm.

› Run this program with
inputs of varying size and
composition.

› Get an accurate measure of
the actual running time
(e.g. system call date).

› Plot the results.

› Problems?

Experimental Approach

2014/8/29 62

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

› The algorithm has to be implemented, which may take a
long time and could be very difficult.

› Results may not be indicative for the running time on
other inputs that are not included in the experiments.

› In order to compare two algorithms, the same hardware
and software must be used.

Limitations of Experimental Studies

2014/8/29 63

› Based on high-level description of the algorithms, rather
than language dependent implementations

› Makes possible an evaluation of the algorithms that is
independent of the hardware and software environments

 Generality

Use a Theoretical Approach

2014/8/29 64

› High-level description of an
algorithm.

› More structured than plain
English.

› Less detailed than a
program.

› Preferred notation for
describing algorithms.

› Hides program design
issues.

Pseudocode

2014/8/29 65

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find the max
element of an array

Primitive Operations
› The basic computations

performed by an
algorithm

› Identifiable in
pseudocode

› Largely independent from
the programming
language

› Exact definition not
important

› Use comments
› Instructions have to be

basic enough and feasible!

› Examples:
– Evaluating an expression
– Assigning a value to a

variable
– Calling a method
– Returning from a method

› Based on primitive operations (low-level computations
independent from the programming language)

› E.g.:
– Make an addition = 1 operation
– Calling a method or returning from a method = 1 operation
– Index in an array = 1 operation
– Comparison = 1 operation etc.

› Method: Inspect the pseudo-code and count the number
of primitive operations executed by the algorithm

Low Level Algorithm Analysis

› By inspecting the code, we can determine the number of
primitive operations executed by an algorithm, as a
function of the input size.

Counting Primitive Operations

2014/8/29 68

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 1

› Algorithm 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 executes 7𝑛𝑛 − 1 primitive
operations.

› Let’s define
– 𝑎𝑎:= Time taken by the fastest primitive operation
– 𝑏𝑏:= Time taken by the slowest primitive operation

› Let 𝑇𝑇(𝑛𝑛) be the actual running time of arrayMax. We
have

𝑎𝑎 (7𝑛𝑛 − 1) ≤ 𝑇𝑇(𝑛𝑛) ≤ 𝑏𝑏(7𝑛𝑛 − 1)
› Therefore, the running time 𝑇𝑇(𝑛𝑛) is bounded by two

linear functions.

Estimating Running Time

› Changing computer hardware / software
– Affects 𝑇𝑇(𝑛𝑛) by a constant factor
– Does not alter the growth rate of 𝑇𝑇(𝑛𝑛)

› The linear growth rate of the running time 𝑇𝑇(𝑛𝑛) is an
intrinsic property of algorithm 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Growth Rate of Running Time

› Growth rates of
functions:
– Linear ≈ 𝑛𝑛
– Quadratic ≈ 𝑛𝑛2

– Cubic ≈ 𝑛𝑛3

› In a log-log chart, the
slope of the line
corresponds to the
growth rate of the
function

Growth Rates

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

› The growth rate is not
affected by
– constant factors or
– lower-order terms

› Examples
– 102𝑛𝑛 + 105 is a linear

function
– 105𝑛𝑛2 + 108𝑛𝑛 is a

quadratic function

Constant Factors

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic
Quadratic
Linear
Linear

› Need to abstract further

› Give an “idea” of how the algorithm performs

› 𝑛𝑛 steps vs. 𝑛𝑛 + 5 steps

› 𝑛𝑛 steps vs. 𝑛𝑛2 steps

Asymptotic Notation

› Complexity of 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 and 𝑐𝑐3𝑛𝑛
– for sufficiently large of value, 𝑐𝑐3𝑛𝑛 is faster than 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛
– for small values of 𝑛𝑛, either could be faster

› 𝑐𝑐1=1, 𝑐𝑐2=2, 𝑐𝑐3=100 --> 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 ≤ 𝑐𝑐3𝑛𝑛 for 𝑛𝑛 ≥ 98
› 𝑐𝑐1=1, 𝑐𝑐2=2, 𝑐𝑐3=1000 --> 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 ≤ 𝑐𝑐3𝑛𝑛 for 𝑛𝑛 ≥ 998

– break even point
› no matter what the values of 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3, the 𝑛𝑛 beyond which
𝑐𝑐3𝑛𝑛 is always faster than 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛

Example

CHAPTER 1 74

Problem
› Fibonacci numbers

– F[0] = 0
– F[1] = 1
– F[i] = F[i-1] + F[i-2] for i ≥ 2

› Pseudo-code

› Number of operations

float sum(float list[], int n){

float tempsum = 0; count++; /* for assignment */

int i;

for (i = 0; i < n; i++) {

count++; /*for the for loop */

/* for assignment */

tempsum += list[i]; count++;

}

count++; /* last execution of for */

return tempsum;

count++; /* for return */

}

Iterative summing of a list of numbers

2014/8/29 78

2n + 3 steps

› Definition
𝑓𝑓(𝑛𝑛) = 𝑂𝑂(𝑔𝑔(𝑛𝑛)) iff there exist positive constants 𝑐𝑐 and
𝑛𝑛0 such that 𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔(𝑛𝑛) for all 𝑛𝑛, 𝑛𝑛 ≥ 𝑛𝑛0.

› Examples
– 3𝑛𝑛 + 2 = 𝑂𝑂(𝑛𝑛) /* 3𝑛𝑛 + 2 ≤ 4𝑛𝑛 for 𝑛𝑛≥2 */
– 3𝑛𝑛 + 3 = 𝑂𝑂(𝑛𝑛) /* 3𝑛𝑛 + 3≤4𝑛𝑛 for 𝑛𝑛≥3 */
– 100𝑛𝑛 + 6 = 𝑂𝑂(𝑛𝑛) /* 100𝑛𝑛 + 6≤101𝑛𝑛 for 𝑛𝑛≥10 */
– 10𝑛𝑛2 + 4𝑛𝑛 + 2 = 𝑂𝑂(𝑛𝑛2) /* 10𝑛𝑛2 + 4𝑛𝑛 + 2≤11𝑛𝑛2 for 𝑛𝑛≥5 */
– 6 ∗ 2n + 𝑛𝑛2 = 𝑂𝑂(2𝑛𝑛) /* 6 ∗ 22 + 𝑛𝑛2 ≤7 ∗ 2n for 𝑛𝑛≥4 */

Asymptotic Notation Big-O

CHAPTER 1 79

› 𝑂𝑂(1): constant

› 𝑂𝑂 log 𝑛𝑛
› 𝑂𝑂(𝑛𝑛): linear

› 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

› 𝑂𝑂(𝑛𝑛2): quadratic

› 𝑂𝑂(𝑛𝑛3): cubic

› 𝑂𝑂(2𝑛𝑛): exponential

› 𝑂𝑂 𝑛𝑛𝑛𝑛 : super exponential

Common Big-Os

CHAPTER 1 80

Applying the Insertion Sort in a Worst-case
Situation

2014/8/29 81

Graph of the Worst-case Analysis of the
Insertion Sort Algorithm

2014/8/29 82

Graph of the Worst-case Analysis of the
Binary Search Algorithm

2014/8/29 83

› Proof of correctness (with formal logic)
– Assertions

› Preconditions
› Loop invariants

› Testing is more commonly used to verify software

› Testing only proves that the program is correct for the
test cases used

Software Verification

2014/8/29 84

› A traveler has a gold chain of seven links.

› He must stay at an isolated hotel for seven nights.

› The rent each night consists of one link from the chain.

› What is the fewest number of links that must be cut so
that the traveler can pay the hotel one link of the chain
each morning without paying for lodging in advance?

Chain Separating Problem

2014/8/29 85

Separating the Chain Using Only Three
Cuts

2014/8/29 86

Solving the Problem with Only One Cut

2014/8/29 87

› A man finds himself on a riverbank with a wolf, a goat,
and a head of cabbage. He needs to transport all three to
the other side of the river in his boat. However, the boat
has room for only the man himself and one other item
(either the wolf, the goat, or the cabbage). In his absence,
the wolf would eat the goat, and the goat would eat the
cabbage. Show how the man can get all these
“passengers” to the other side.

A Wolf, a Goat, and a Cabbage

2014/8/29 88

› A detachment of 25 soldiers must cross a wide and deep
river with no bridge in sight. They notice two 12-year-
old boys playing in a rowboat by the shore. The boat is
so tiny, however, that it can only hold two boys or one
soldier. How can the soldiers get across the river and
leave the boys in joint possession of the boat? How
many times does the boat pass from shore to shore in
your algorithm?

Ferrying Soldiers

2014/8/29 89

› There are eight identical-looking coins; one of these
coins is counterfeit and is known to be lighter than the
genuine coins. What is the minimum number of
weightings needed to identify the fake coin with a two-
pan balance scale without weights?

A Fake Among Eight Coins

2014/8/29 90

The Assertions Associated with a Typical
while Structure

2014/8/29 91

int j = 9;
for(int i=0; i<10; i++)
j--;

› In this example it is true (for every iteration):
– i + j == 9.
– A weaker invariant that is also true is that i >= 0 && i <=
10.

Loop Invariants

2014/8/29 92

Loop Invariants

2014/8/29 93

int max(int n,const int a[n]) {
int m = a[0];
// m equals the maximum value in a[0...0]
int i = 1;
while (i != n) {

// m equals the maximum value in a[0...i-1]
if (m < a[i])

m = a[i];
// m equals the maximum value in a[0...i]

++i;
// m equals the maximum value in a[0...i-1]

}
// m equals the maximum value in a[0...i-1], and i==n
return m;

}

	Introduction to Computer Science
	Chapter 5: Algorithms
	投影片編號 3
	The concept of an algorithm
	Definition of Algorithm
	The abstract nature of algorithms
	Algorithm Representation
	Folding a Bird From a Square Piece of Paper
	Origami Primitives
	Data Type
	*Structure:Abstract data type Natural_Number �structure Natural_Number is� objects: an ordered subrange of the integers starting at zero and ending �	 at the maximum integer (INT_MAX) on the computer� functions:� for all x, y  Nat_Number; TRUE, FALSE  Boolean� and where +, -, <, and == are the usual integer operations.� Nat_No Zero () 	::= 0� Boolean Is_Zero(x) 	::= if (x) return FALSE� else return TRUE� Nat_No Add(x, y) 	::= if ((x+y) <= INT_MAX) return x+y � else return INT_MAX� Boolean Equal(x,y) 	::= if (x== y) return TRUE� else return FALSE� Nat_No Successor(x) 	::= if (x == INT_MAX) return x� else return x+1� Nat_No Subtract(x,y)	::= if (x<y) return 0� else return x-y� end Natural_Number �
	Designing a pseudocode language
	Pseudocode Primitives
	Pseudocode Primitives (continued)
	Pseudocode Primitives (continued)
	The Procedure Greetings in Pseudocode
	Pseudocode Primitives (continued)
	Algorithm discovery
	Polya’s Problem Solving Steps
	Polya’s Steps in the Context of Program Development
	Getting a Foot in the Door
	Ages of Children Problem
	Ages of Children Problem
	Iterative structures
	Measurements
	The Sequential Search Algorithm in Pseudocode
	Components of Repetitive Control
	Iterative Structures
	The while Loop Structure
	The repeat Loop Structure
	Sorting the List Fred, Alex, Diana, Byron, and Carol Alphabetically (Insertion Sort)
	The Insertion Sort Algorithm Expressed in Pseudocode
	Recursion
	Applying Our Strategy to Search a List for the Entry John
	A First Draft of the Binary Search Technique
	The Binary Search Algorithm in Pseudocode
	Binary Search Trace of the Pseudocode
	Binary Search Trace of the Pseudocode
	Binary Search Trace of the Pseudocode
	Recursive control
	Spanning trees
	Constructing a spanning tree
	Minimum cost spanning trees
	Minimum-cost spanning trees
	Finding spanning trees
	Kruskal’s algorithm
	Prim’s algorithm
	Mazes
	Mazes as spanning trees
	Building a maze I
	Building a maze II
	Efficiency and correctness
	Efficiency
	Algorithm Analysis
	Space Complexity
	Space Complexity
	Space Complexity
	Time Complexity
	Running Time
	Running Time
	Running Time
	Experimental Approach
	Limitations of Experimental Studies
	Use a Theoretical Approach
	Pseudocode
	Primitive Operations
	Low Level Algorithm Analysis
	Counting Primitive Operations
	Estimating Running Time
	Growth Rate of Running Time
	Growth Rates
	Constant Factors
	Asymptotic Notation
	Example
	Problem
	Iterative summing of a list of numbers
	Asymptotic Notation Big-O
	Common Big-Os
	Applying the Insertion Sort in a Worst-case Situation
	Graph of the Worst-case Analysis of the Insertion Sort Algorithm
	Graph of the Worst-case Analysis of the Binary Search Algorithm
	Software Verification
	Chain Separating Problem
	Separating the Chain Using Only Three Cuts
	Solving the Problem with Only One Cut
	A Wolf, a Goat, and a Cabbage
	Ferrying Soldiers
	A Fake Among Eight Coins
	The Assertions Associated with a Typical while Structure
	Loop Invariants
	Loop Invariants

