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Chapter 5: Algorithms
An algorithm is any set of detailed instructions which results in a predictable end-state from 
a known beginning. Algorithms are only as good as the instructions given, however, and 
the result will be incorrect if the algorithm is not properly defined.



› 5.1 The Concept of an Algorithm

› 5.2 Algorithm Representation

› 5.3 Algorithm Discovery

› 5.4  Iterative Structures

› 5.5 Recursive Structures

› 5.6 Efficiency and Correctness



› Algorithms from previous chapters
– Converting from one base to another
– Correcting errors in data
– Compression

› Many researchers believe that every activity of the 
human mind is the result of an algorithm

The concept of an algorithm



› An algorithm is an ordered set of unambiguous, executable
steps that defines a terminating process.
– Parallel algorithms. (Not step by step)
– Finite.
– Solvable vs unsolvable.
– Effective vs noneffective.

› A Terminating Process 
– Culminates with a result
– Can include systems that run continuously
– Hospital systems
– Long Division Algorithm

› A Non-terminating Process 
– Does not produce an answer
– Nondeterministic algorithms.

Definition of Algorithm
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› There is a difference between an algorithm and its 
representation.
– Analogy: difference between a story and a book

› A Program is a representation of an algorithm.

› A Process is the activity of executing an algorithm.

The abstract nature of algorithms
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Algorithm Representation
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› Requires well-defined primitives.
– Some form of language. (Natural)
– A collection of primitives constitutes a programming language.

› Is done informally with Pseudocode
– Pseudocode is between natural language and a programming 

language.



Folding a Bird From a Square Piece of 
Paper
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Origami Primitives
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› Data Type: A data type is a collection of objects and a 
set of operations that act on those objects.

› Abstract Data Type: An abstract data type(ADT) is a 
data type that is organized in such a way that the 
specification of the objects and the operations on the 
objects is separated from the representation of the 
objects and the implementation of the operations.

Data Type
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CHAPTER 1 11

*Structure:Abstract data type Natural_Number
structure Natural_Number is

objects:  an ordered subrange of the integers starting at zero and ending 
at the maximum integer (INT_MAX) on the computer

functions:
for all x, y ∈ Nat_Number; TRUE, FALSE ∈ Boolean
and where +, -, <, and == are the usual integer operations.
Nat_No Zero (  )        ::=  0
Boolean Is_Zero(x)   ::= if (x) return FALSE

else return TRUE
Nat_No Add(x, y)      ::= if ((x+y) <= INT_MAX) return x+y

else return INT_MAX
Boolean Equal(x,y)   ::= if (x== y) return TRUE

else return FALSE
Nat_No Successor(x) ::= if (x == INT_MAX) return x

else return x+1
Nat_No Subtract(x,y) ::= if (x<y) return 0

else return x-y
end Natural_Number ::= is defined as



› Choose a common programming language

› Loosen some of the syntax rules

› Allow for some natural language

› Use consistent, concise notation

› We will use a Python-like Pseudocode

Designing a pseudocode language
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• Assignment
name = expression

• Example
RemainingFunds = CheckingBalance + 

SavingsBalance

› Conditional selection
if (condition):

activity

› Example
if (sales have decreased):

lower the price by 5%

Pseudocode Primitives
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› Repeated execution
while (condition):

body

› Example
while (tickets remain to be sold):

sell a ticket

› Indentation shows nested conditions 
if (not raining):

if (temperature == hot):
go swimming

else:
play golf

else:
watch television

Pseudocode Primitives (continued)
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› Define a function
def name():

› Example
def ProcessLoan():

› Executing a function
if (. . .):

ProcessLoan()
else:

RejectApplication()

Pseudocode Primitives (continued)
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def Greetings():

Count = 3

while (Count > 0):

print('Hello')

Count = Count - 1

The Procedure Greetings in Pseudocode
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• Using parameters
def Sort(List):

.

.

• Executing Sort on different lists
Sort(the membership list)

Sort(the wedding guest list)

Pseudocode Primitives (continued)
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› The first step in developing a program

› More of an art than a skill

› A challenging task

Algorithm discovery
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1. Understand the problem.

2. Devise a plan for solving the problem.

3. Carry out the plan.

4. Evaluate the solution for accuracy and its potential as 
a tool for solving other problems.

Polya’s Problem Solving Steps
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1. Understand the problem.

2. Get an idea of how an algorithmic function might 
solve the problem.

3. Formulate the algorithm and represent it as a program.

4. Evaluate the solution for accuracy and its potential as 
a tool for solving other problems.

Polya’s Steps in the Context of Program 
Development
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› Try working the problem backwards.

› Solve an easier related problem.
– Relax some of the problem constraints.
– Solve pieces of the problem first (bottom up methodology).

› Stepwise refinement: Divide the problem into smaller 
problems (top-down methodology).

Getting a Foot in the Door
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› Person A is charged with the task of determining the 
ages of  B’s three children.
– B tells A that the product of the children’s ages is 36.
– A replies that another clue is required.
– B tells A the sum of the children’s ages.
– A replies that another clue is needed.
– B tells A that the oldest child plays the piano.
– A tells B the ages of the three children.

› How old are the three children?

Ages of Children Problem
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Ages of Children Problem
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› A collection of instructions repeated in a looping 
manner

› Examples include:
– Sequential search algorithm
– Insertion sort algorithm

Iterative structures
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› Criteria
– Is it correct?
– Is it readable?
– …

› Performance Analysis (machine independent)
– space complexity: storage requirement
– time complexity: computing time

› Performance Measurement (machine dependent)

Measurements
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def Search (List, TargetValue):

if (List is empty):

Declare search a failure

else:

Select the first entry in List to be TestEntry

while (TargetValue > TestEntry and entries remain):

Select the next entry in List as TestEntry

if (TargetValue == TestEntry):

Declare search a success

else:

Declare search a failure

The Sequential Search Algorithm in 
Pseudocode
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Components of Repetitive Control
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› Pretest loop:
while (condition):

body

› Posttest loop:
repeat:

body
until(condition)

Iterative Structures
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The while Loop Structure
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The repeat Loop Structure
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Sorting the List Fred, Alex, Diana, Byron, 
and Carol Alphabetically (Insertion Sort)

2014/8/29 31



def Sort(List):

N = 2

while (N <= length of List):

Pivot = Nth entry in List

Remove Nth entry leaving a hole in List

while (there is an Entry above the 

hole and Entry > Pivot):

Move Entry down into the hole leaving 

a hole in the list above the Entry

Move Pivot into the hole 

N = N + 1

The Insertion Sort Algorithm Expressed in 
Pseudocode
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› Repeating the set of instructions as a subtask of itself.

› Multiple activations of the procedure are formed, all but 
one of which are waiting for other activations to 
complete.

› Example: The Binary Search Algorithm

Recursion
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Applying Our Strategy to Search a List for 
the Entry John
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if (List is empty):

Report that the search failed

else:

TestEntry = middle entry in the List

if (TargetValue == TestEntry):

Report that the search succeeded

if (TargetValue < TestEntry):

Search the portion of List preceding TestEntry for  

TargetValue, and report the result of that search

if (TargetValue > TestEntry):

Search the portion of List following TestEntry for

TargetValue, and report the result of that search

A First Draft of the Binary Search 
Technique
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def Search(List, TargetValue):

if (List is empty):

Report that the search failed

else:

TestEntry = middle entry in the List

if (TargetValue == TestEntry):

Report that the search succeeded

if (TargetValue < TestEntry):

Sublist = portion of List preceding TestEntry

Search(Sublist, TargetValue)

if (TargetValue > TestEntry):

Sublist = portion of List following TestEntry

Search(Sublist, TargetValue)

The Binary Search Algorithm in 
Pseudocode
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Binary Search Trace of the Pseudocode
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Binary Search Trace of the Pseudocode
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Binary Search Trace of the Pseudocode
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› Requires initialization, modification, and a test for  
termination (base case) 

› Provides the illusion of multiple copies of the function, 
created dynamically in a telescoping manner

› Only one copy is actually running at a given time, the 
others are waiting

Recursive control
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› Suppose you have a connected undirected graph.
– Connected: every node is reachable from every other node.
– Undirected: edges do not have an associated direction.

› A spanning tree of the graph is a connected subgraph in 
which there are no cycles.

Spanning trees
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A connected,
undirected graph

Four of the spanning trees of the graph



pick an initial node and call it part of the 
spanning tree
do a search from the initial node:

each time you find a node that is not in the 
spanning tree, add to the spanning tree both the 
new node and the edge you followed to get to it

Constructing a spanning tree
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An undirected graph One possible 
result of a BFS
starting from top

One possible 
result of a DFS
starting from top



› Suppose you want to supply a set of houses (say, in a 
new subdivision) with:
– electric power
– water
– sewage lines
– telephone lines

› To keep costs down, you could connect these houses 
with a spanning tree (of, for example, power lines).
– The houses are not all equal distances apart.

› To reduce costs even further, you could connect the. 
houses with a minimum-cost spanning tree.

Minimum cost spanning trees
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Minimum-cost spanning trees
› Suppose you have a connected undirected graph with a 

weight (or cost) associated with each edge

› The cost of a spanning tree would be the sum of the 
costs of its edges

› A minimum-cost spanning tree is a spanning tree that 
has the lowest cost
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Finding spanning trees
› There are two basic algorithms for finding minimum-

cost spanning trees, and both are greedy algorithms

› Kruskal’s algorithm: Start with no nodes or edges in 
the spanning tree, and repeatedly add the cheapest edge 
that does not create a cycle
– Here, we consider the spanning tree to consist of edges only

› Prim’s algorithm: Start with any one node in the 
spanning tree, and repeatedly add the cheapest edge, and 
the node it leads to, for which the node is not already in 
the spanning tree.
– Here, we consider the spanning tree to consist of both nodes and 

edges
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Kruskal’s algorithm
T = empty spanning tree;
E = set of edges;
N = number of nodes in graph;

while T has fewer than N - 1 edges {
remove an edge (v, w) of lowest cost from E
if adding (v, w) to T would create a cycle

then discard (v, w)
else add (v, w) to T

}

› Finding an edge of lowest cost can be done just by sorting the 
edges

› Efficient testing for a cycle requires a fairly complex 
algorithm (UNION-FIND) which we don’t cover in this 
course
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Prim’s algorithm
T = a spanning tree containing a single 
node s;
E = set of edges adjacent to s;
while T does not contain all the nodes {

remove an edge (v, w) of lowest cost from E
if w is already in T then discard edge (v, w)
else {

add edge (v, w) and node w to T
add to E the edges adjacent to w

}

}

› An edge of lowest cost can be found with a priority queue
› Testing for a cycle is automatic

– Hence, Prim’s algorithm is far simpler to implement than Kruskal’s 
algorithm
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Mazes
› Typically,

– Every location in a maze is 
reachable from the starting location

– There is only one path from start to 
finish

› If the cells are “vertices” and the 
open doors between cells are 
“edges,” this describes a 
spanning tree

› Since there is exactly one path 
between any pair of cells, any 
cells can be used as “start” and 
“finish”

› This describes a spanning tree
48



Mazes as spanning trees
› While not every maze is a 

spanning tree, most can 
be represented as such

› The nodes are “places” 
within the maze

› There is exactly one 
cycle-free path from any 
node to any other node
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Building a maze I
› This algorithm requires two 

sets of cells
– the set of cells already in the 

spanning tree, IN
– the set of cells adjacent to 

the cells in the spanning tree 
(but not in it themselves), 
called the FRONTIER

› Start with all walls present

› Pick any cell and put it into 
IN (red)

› Put all adjacent cells, that 
aren’t in IN, into 
FRONTIER (blue)
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Building a maze II
› Repeatedly do the following:

– Remove any one cell C from 
FRONTIER and put it in IN

– Erase the wall between C
and some one adjacent cell 
in IN

– Add to FRONTIER all the 
cells adjacent to C that aren’t 
in IN (or in FRONTIER
already)

– Continue until there are no 
more cells in FRONTIER

– When the maze is complete 
(or at any time), choose the 
start and finish cells
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› The choice between efficient and inefficient algorithms 
can make the difference between a practical solution and 
an impractical one

› The correctness of an algorithm is determined by 
reasoning formally about the algorithm, not by testing 
its implementation

Efficiency and correctness
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› Measured as number of instructions executed

› Uses big theta notation:

› Example: Insertion sort is in Θ(𝑛𝑛2)
› Incorporates best, worst, and average case analysis

Efficiency
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› Space complexity
– How much space is required

› Time complexity
– How much time does it take to run the algorithm

› Often, we deal with estimates!

Algorithm Analysis
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› Space complexity = The amount of memory required by 
an algorithm to run to completion
– [Core dumps = the most often encountered cause is “dangling 

pointers”]

› Some algorithms may be more efficient if data 
completely loaded into memory 
– Need to look also at system limitations
– E.g. Classify 2GB of text in various categories [politics, tourism, 

sport, natural disasters, etc.] – can I afford to load the entire 
collection?

Space Complexity
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1. Fixed part: The size required to store certain 
data/variables, that is independent of the size of the 
problem:
- e.g. name of the data collection
- same size for classifying 2GB or 1MB of texts

2. Variable part: Space needed by variables, whose size 
is dependent on the size of the problem:
- e.g. actual text 
- load 2GB of text VS. load 1MB of text 

Space Complexity
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› S(P) = c + S(instance characteristics)
– c = constant

› Example:
float summation(const float (&a)[10], int n )

{

float s = 0;

int i;

for(i = 0; i<n; i++) {

s+= a[i];

}

return s;

}

› Space requirement: one for n, one for a [passed by 
reference!], one for i constant space!

Space Complexity
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› Often more important than space complexity
– space available (for computer programs!) tends to be larger and 

larger
– time is still a problem for all of us 

› 3-4GHz processors on the market 
– still … 
– researchers estimate that the computation of various 

transformations for 1 single DNA chain for one single protein 
on 1 TerraHZ computer would take about 1 year to run to 
completion

› Algorithms running time is an important issue

Time Complexity
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› Suppose the program includes an if-then statement that 
may execute or not:  variable running time

› Typically algorithms are measured by their worst case

Running Time
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› The running time of an algorithm varies 
with the inputs, and typically grows 
with the size of the inputs.

› To evaluate an algorithm or to compare 
two algorithms, we focus on their 
relative rates of growth wrt the increase 
of the input size.

› The average running time is difficult to 
determine. 

› We focus on the worst case running 
time
– Easier to analyze
– Crucial to applications such as finance, 

robotics, and games

Running Time
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› Problem: prefix averages
– Given an array X
– Compute the array A such that A[i] is the average of elements 

X[0] … X[i], for i=0..n-1

› Sol 1
– At each step i, compute the element  X[i] by traversing the array 

A and determining the sum of its elements, respectively the 
average 

› Sol 2
– At each step i update a sum of the elements in the array A
– Compute the element X[i]  as sum/I

Running Time
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› Write a program to 
implement the algorithm.

› Run this program with 
inputs of varying size and 
composition.

› Get an accurate measure of 
the actual running time 
(e.g. system call date).

› Plot the results.

› Problems?

Experimental Approach
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› The algorithm has to be implemented, which may take a 
long time and could be very difficult.

› Results may not be indicative for the running time on 
other inputs that are not included in the experiments. 

› In order to compare two algorithms, the same hardware 
and software must be used.

Limitations of Experimental Studies
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› Based on high-level description of the algorithms, rather 
than language dependent implementations

› Makes possible an evaluation  of the algorithms that is 
independent of the hardware and software environments

 Generality

Use a Theoretical Approach

2014/8/29 64



› High-level description of an 
algorithm.

› More structured than plain 
English.

› Less detailed than a 
program.

› Preferred notation for 
describing algorithms.

› Hides program design 
issues.

Pseudocode
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Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find the max 
element of an array



Primitive Operations
› The basic computations 

performed by an 
algorithm

› Identifiable in 
pseudocode

› Largely independent from 
the programming 
language

› Exact definition not 
important

› Use comments
› Instructions have to be 

basic enough and feasible!

› Examples:
– Evaluating an expression
– Assigning a value to a 

variable
– Calling a method
– Returning from a method



› Based on primitive operations (low-level computations 
independent from the programming language)

› E.g.:
– Make an addition = 1 operation
– Calling a method or returning from a method = 1 operation
– Index in an array = 1 operation
– Comparison = 1 operation etc.

› Method: Inspect the pseudo-code and count the number 
of primitive operations executed by the algorithm

Low Level Algorithm Analysis



› By inspecting the code, we can determine the number of 
primitive operations executed by an algorithm, as a 
function of the input size.

Counting Primitive Operations
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Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 1



› Algorithm 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 executes 7𝑛𝑛 − 1 primitive 
operations. 

› Let’s define
– 𝑎𝑎:= Time taken by the fastest primitive operation
– 𝑏𝑏:= Time taken by the slowest primitive operation

› Let 𝑇𝑇(𝑛𝑛) be the actual running time of arrayMax. We 
have

𝑎𝑎 (7𝑛𝑛 − 1) ≤ 𝑇𝑇(𝑛𝑛) ≤ 𝑏𝑏(7𝑛𝑛 − 1)
› Therefore, the running time 𝑇𝑇(𝑛𝑛) is bounded by two 

linear functions.

Estimating Running Time



› Changing computer hardware / software
– Affects 𝑇𝑇(𝑛𝑛) by a constant factor
– Does not alter the growth rate of 𝑇𝑇(𝑛𝑛)

› The linear growth rate of the running time 𝑇𝑇(𝑛𝑛) is an 
intrinsic property of algorithm 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Growth Rate of Running Time



› Growth rates of 
functions:
– Linear ≈ 𝑛𝑛
– Quadratic ≈ 𝑛𝑛2

– Cubic ≈ 𝑛𝑛3

› In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate of the 
function

Growth Rates
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› The growth rate is not 
affected by
– constant factors or 
– lower-order terms

› Examples
– 102𝑛𝑛 + 105 is a linear 

function
– 105𝑛𝑛2 + 108𝑛𝑛 is a 

quadratic function

Constant Factors
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› Need to abstract further

› Give an “idea” of how the algorithm performs

› 𝑛𝑛 steps vs. 𝑛𝑛 + 5 steps

› 𝑛𝑛 steps vs. 𝑛𝑛2 steps 

Asymptotic Notation



› Complexity of 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 and 𝑐𝑐3𝑛𝑛
– for sufficiently large of value, 𝑐𝑐3𝑛𝑛 is faster than 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛
– for small values of 𝑛𝑛, either could be faster

› 𝑐𝑐1=1, 𝑐𝑐2=2, 𝑐𝑐3=100 --> 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 ≤ 𝑐𝑐3𝑛𝑛 for 𝑛𝑛 ≥ 98
› 𝑐𝑐1=1, 𝑐𝑐2=2, 𝑐𝑐3=1000 --> 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛 ≤ 𝑐𝑐3𝑛𝑛 for 𝑛𝑛 ≥ 998

– break even point
› no matter what the values of 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3, the 𝑛𝑛 beyond which 
𝑐𝑐3𝑛𝑛 is always faster than 𝑐𝑐1𝑛𝑛2 + 𝑐𝑐2𝑛𝑛

Example
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Problem
› Fibonacci numbers

– F[0] = 0
– F[1] = 1
– F[i] = F[i-1] + F[i-2] for i ≥ 2

› Pseudo-code

› Number of operations



float sum(float list[ ], int n){

float tempsum = 0; count++; /* for assignment */

int i;

for (i = 0; i < n; i++) {

count++; /*for the for loop */

/* for assignment */

tempsum += list[i]; count++;

}

count++; /* last execution of for */

return tempsum;

count++; /* for return */

}

Iterative summing of a list of numbers
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› Definition
𝑓𝑓(𝑛𝑛) = 𝑂𝑂(𝑔𝑔(𝑛𝑛)) iff there exist positive constants 𝑐𝑐 and 
𝑛𝑛0 such that 𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐𝑔𝑔(𝑛𝑛) for all 𝑛𝑛, 𝑛𝑛 ≥ 𝑛𝑛0.

› Examples
– 3𝑛𝑛 + 2 = 𝑂𝑂(𝑛𝑛) /* 3𝑛𝑛 + 2 ≤ 4𝑛𝑛 for 𝑛𝑛≥2 */
– 3𝑛𝑛 + 3 = 𝑂𝑂(𝑛𝑛) /* 3𝑛𝑛 + 3≤4𝑛𝑛 for 𝑛𝑛≥3 */
– 100𝑛𝑛 + 6 = 𝑂𝑂(𝑛𝑛) /* 100𝑛𝑛 + 6≤101𝑛𝑛 for 𝑛𝑛≥10 */
– 10𝑛𝑛2 + 4𝑛𝑛 + 2 = 𝑂𝑂(𝑛𝑛2) /* 10𝑛𝑛2 + 4𝑛𝑛 + 2≤11𝑛𝑛2 for 𝑛𝑛≥5 */
– 6 ∗ 2n + 𝑛𝑛2 = 𝑂𝑂(2𝑛𝑛) /* 6 ∗ 22 + 𝑛𝑛2 ≤7 ∗ 2n for 𝑛𝑛≥4 */

Asymptotic Notation Big-O
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› 𝑂𝑂(1): constant

› 𝑂𝑂 log 𝑛𝑛
› 𝑂𝑂(𝑛𝑛): linear

› 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

› 𝑂𝑂(𝑛𝑛2): quadratic

› 𝑂𝑂(𝑛𝑛3): cubic

› 𝑂𝑂(2𝑛𝑛): exponential

› 𝑂𝑂 𝑛𝑛𝑛𝑛 : super exponential

Common Big-Os
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Applying the Insertion Sort in a Worst-case 
Situation
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Graph of the Worst-case Analysis of the 
Insertion Sort Algorithm
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Graph of the Worst-case Analysis of the 
Binary Search Algorithm
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› Proof of correctness (with formal logic)
– Assertions

› Preconditions
› Loop invariants

› Testing is more commonly used to verify software

› Testing only proves that the program is correct for the 
test cases used

Software Verification
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› A traveler has a gold chain of seven links.

› He must stay at an isolated hotel for seven nights.

› The rent each night consists of one link from the chain.

› What is the fewest number of links that must be cut so 
that the traveler can pay the hotel one link of the chain 
each morning without paying for lodging in advance?

Chain Separating Problem
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Separating the Chain Using Only Three 
Cuts
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Solving the Problem with Only One Cut
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› A man finds himself on a riverbank with a wolf, a goat, 
and a head of cabbage. He needs to transport all three to 
the other side of the river in his boat. However, the boat 
has room for only the man himself and one other item 
(either the wolf, the goat, or the cabbage). In his absence, 
the wolf would eat the goat, and the goat would eat the 
cabbage. Show how the man can get all these 
“passengers” to the other side.

A Wolf, a Goat, and a Cabbage
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› A detachment of 25 soldiers must cross a wide and deep 
river with no bridge in sight. They notice two 12-year-
old boys playing in a rowboat by the shore. The boat is 
so tiny, however, that it can only hold two boys or one 
soldier. How can the soldiers get across the river and 
leave the boys in joint possession of the boat? How 
many times does the boat pass from shore to shore in 
your algorithm?

Ferrying Soldiers
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› There are eight identical-looking coins; one of these 
coins is counterfeit and is known to be lighter than the 
genuine coins. What is the minimum number of 
weightings needed to identify the fake coin with a two-
pan balance scale without weights?

A Fake Among Eight Coins
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The Assertions Associated with a Typical 
while Structure
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int j = 9;
for(int i=0; i<10; i++)
j--;

› In this example it is true (for every iteration):
– i + j == 9. 
– A weaker invariant that is also true is that i >= 0 && i <= 
10.

Loop Invariants
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Loop Invariants

2014/8/29 93

int max(int n,const int a[n]) { 
int m = a[0];
// m equals the maximum value in a[0...0] 
int i = 1; 
while (i != n) { 

// m equals the maximum value in a[0...i-1] 
if (m < a[i]) 

m = a[i]; 
// m equals the maximum value in a[0...i] 

++i; 
// m equals the maximum value in a[0...i-1] 

} 
// m equals the maximum value in a[0...i-1], and i==n 
return m; 

} 
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