
Introduction to Computer Science

William Hsu
Advanced Computation Laboratory
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

Chapter 3: Operating Systems
An operating system is the most important software that runs on a computer. It manages
the computer's memory, processes, and all of its software and hardware. It also allows you
to communicate with the computer without knowing how to speak the computer's
"language." Without an operating system, a computer is useless.

› 3.1 The History of Operating
Systems

› 3.2 Operating System Architecture

› 3.3 Coordinating the Machine’s
Activities

› 3.4 Handling Competition Among
Processes

› 3.5 Security

› Windows

› UNIX

› Mac OS

› Solaris (Sun/Oracle machines)

› Linux

Examples of Operating Systems

› Apple iOS

› Windows Phone

› BlackBerry OS

› Nokia Symbian OS

› Google Android

Smartphone Operating Systems

2014/8/29 5

› Oversee operation of computer.

› Store and retrieve files.

› Schedule programs for execution.

› Coordinate the execution of programs.

Functions of Operating Systems

History of Operating Systems
› Each program is called a “job”

› Early computers required significant setup time

› Each “job” required its own setup

› Operating Systems began as systems for simplifying
setup and transitions between jobs

History of Operating Systems
› Batch processing (job queue)

› Interactive processing (real time)

› Time-sharing (one machine, many users)

› Multitasking (one user, many tasks)

› Multiprocessor machines (load balancing)

› Embedded Systems (specific devices)

Functions of O.S
› Memory Management

› Processor Management

› Device Management

› File Management

› Security

› Control over system performance

› Job accounting

› Error detecting aids

› Coordination between other software and users

Memory Management
› Memory management refers to management of Primary

Memory or Main Memory.
– Main memory is a large array of words or bytes where each

word or byte has its own address.
– Main memory provides a fast storage that can be accessed

directly by the CPU. So for a program to be executed, it must be
in the main memory.

– Activities of O.S for memory management.
– Keeps tracks of primary memory i.e. what part of it are in use

by whom, what part are not in use.
– In multiprogramming, OS decides which process will get

memory when and how much.
– Allocates the memory when the process requests it to do so.
– De-allocates the memory when the process no longer needs it or

has been terminated.

Processor management
› In multiprogramming environment, OS decides which

process gets the processor when and how much time.
This function is called process scheduling.

› Activities O. S for processor management.
– Keeps tracks of processor and status of process. Program

responsible for this task is known as traffic controller.
– Allocates the processor(CPU) to a process.
– De-allocates processor when processor is no longer required.

Device management
› OS manages device communication via their respective

drivers. Operating System does the following activities
for device management.
– Keeps tracks of all devices. Program responsible for this task is

known as the I/O controller.
– Decides which process gets the device when and for how much

time.
– Allocates the device in the efficient way.
– De-allocates devices.

File management
› A file system is normally organized into directories for

easy navigation and usage. These directories may
contain files and other directions.

› Activities of the OS in file management.
– Keeps track of information, location, uses, status etc. The

collective facilities are often known as file system.
– Decides who gets the resources.
– Allocates the resources.
– De-allocates the resources.

Other activities
› Following are some of the important activities that Operating

System does.
› Security -- By means of password and similar other

techniques, preventing unauthorized access to programs and
data.

› Control over system performance -- Recording delays
between request for a service and response from the system.

› Job accounting -- Keeping track of time and resources used
by various jobs and users.

› Error detecting aids -- Production of dumps, traces, error
messages and other debugging and error detecting aids.

› Coordination between other softwares and users --
Coordination and assignment of compilers, interpreters,
assemblers and other software to the various users of the
computer systems.

› The users of batch operating system do not interact with
the computer directly.
– Each user prepares his job on an off-line device like punch

cards and submits it to the computer operator.
– To speed up processing, jobs with similar needs are batched

together and run as a group.
› Programmers leave their programs with the operator.
› The operator then sorts programs into batches with similar

requirements.

› The problems with Batch Systems are following.
– Lack of interaction between the user and job.
– CPU is often idle, because the speeds of the mechanical I/O

devices is slower than CPU.
– Difficult to provide the desired priority.

Batch Processing

2014/8/29 15

Batch Processing

2014/8/29 16

Job Queue: First in First out (FIFO)
Priority Queues?

Interactive Processing

2014/8/29 17

› Computers in the 1960s and 1970s were expensive, so
each machine had to serve more than one user.
– Multiprogramming in which time is divided into intervals and

then the execution of each job is restricted to only one interval
at a time. (Timesharing)

– Multitasking refers to one user executing numerous tasks
simultaneously.

› Advanced operating systems have
– Load balancing: dynamically allocating tasks to the various

processors so that all processors are used efficiently.
– Scaling: breaking tasks into a number of subtasks compatible

with the number of processors available.

Multitasking

2014/8/29 18

Multiprogramming

2014/8/29 19

Multiprogramming

2014/8/29 20

Multitasking

2014/8/29 21

Preemptive vs Non-preemptive

2014/8/29 22

1. Task 1 is executing.

2. The kernel suspends (swaps out) task 1. (With some required time overhead)

3. Resumes task 2.

4. While task 2 is executing, it locks a processor peripheral for its own exclusive access.

5. The kernel suspends task 2.

6. Resumes task 3.

7. Task 3 tries to access the same processor peripheral, finding it locked task 3 cannot continue so suspends itself at.

8. The kernel resumes task 1.

9. …

10. The next time task 2 is executing (9) it finishes with the processor peripheral and unlocks it.

11. The next time task 3 is executing (10) it finds it can now access the processor peripheral and this time executes until suspended by
the kernel.

Events of context switching

2014/8/29 23

#include <stdio.h>

#include <omp.h>

int main(void)

{

int accumulator = 0;

int i;

#pragma omp parallel for

for(i = 0; i < 100000; i++)

{

#pragma omp atomic

accumulator++;

printf("%d ", i);

}

printf("\nTotal numbers = %ld\n", accumulator);

}

Example: OMP

2014/8/29 24

› Application software
– Performs specific tasks for users (productivity, games, software

development)

› System software
– Provides infrastructure for application software
– Consists of operating system and utility software

Types of Software

2014/8/29 25

Software Classification

2014/8/29 26

› User Interface: Communicates with users
– Text based (Shell)
– Graphical user interface (GUI)

› Kernel: Performs basic required functions
– File manager
– Device drivers
– Memory manager
– Scheduler and dispatcher

Operating System Components

2014/8/29 27

The UI Acts as an Intermediary Between
Users and the OS Kernel

2014/8/29 28

› Directory (or Folder): A user-created bundle of files
and other directories (subdirectories)

› Directory Path: A sequence of directories within
directories

File Manager

2014/8/29 29

› Allocates space in main memory.

› May create the illusion that the machine has more
memory than it actually does (virtual memory) by
playing a “shell game” in which blocks of data (pages)
are shifted back and forth between main memory and
mass storage.

Memory Manager

2014/8/29 30

Virtual memory systems

2014/8/29 31

Shared library using virtual memory

2014/8/29 32

Shared page conflicts

2014/8/29 33

› Boot loader: Program in ROM (example of firmware)
– Run by the CPU when power is turned on.
– Transfers operating system from mass storage to main memory.
– Executes jump to operating system.

Getting it Started (Bootstrapping)

2014/8/29 34

› An operating system coordinates the execution of
application software, utility software, and units within
the operating system itself.

Coordinating the Machine’s Activities

2014/8/29 35

› Process: The activity of executing a program.

› Process State: Current status of the activity.
– Program counter
– General purpose registers
– Related portion of main memory

Processes

2014/8/29 36

› Scheduler: Adds new processes to the process table and
removes completed processes from the process table.

› Dispatcher: Controls the allocation of time slices to the
processes in the process table.
– The end of a time slice is signaled by an interrupt.
– Context switching happens then.

Process Administration

2014/8/29 37

Time-sharing Between Process A and
Process B

2014/8/29 38

› Semaphore: A “control flag”.

› Critical Region: A group of instructions that should be
executed by only one process at a time.

› Mutual exclusion: Requirement for proper
implementation of a critical region.

Handling Competition for Resources

2014/8/29 39

Parallelism vs Concurrency

2014/8/29 40

Parallelism vs Concurrency

2014/8/29 41

› Processes block each other from continuing because
each is waiting for a resource that is allocated to another.

› Conditions required for deadlock:
1. Competition for non-sharable resources.
2. Resources requested on a partial basis.
3. An allocated resource can not be forcibly retrieved.

Deadlock

2014/8/29 42

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Deadlock
› Resource sharing

– Memory management and processor sharing

› Many programs competing for limited resources

› Lack of process synchronization consequences
– Deadlock: “deadly embrace”

› Two or more jobs placed in HOLD state
› Jobs waiting for unavailable vital resource
› System comes to standstill
› Resolved via external intervention

– Starvation
› Infinite postponement of job

43

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Deadlock
› More serious than starvation

› Affects entire system
– Affects more than one job

› Not just a few programs
– All system resources become unavailable

› Example: traffic jam

› More prevalent in interactive systems

› Real-time systems
– Deadlocks quickly become critical situations

› No simple and immediate solution

44

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Seven Cases of Deadlock
› Nonsharable/nonpreemptable resources

– Allocated to jobs requiring same type of resources

› Resource types locked by competing jobs
– File requests
– Databases
– Dedicated device allocation
– Multiple device allocation
– Spooling
– Network
– Disk sharing

46

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 1: Deadlocks on File Requests
› Jobs request and hold files for execution duration

› Example
– Two programs (P1, P2) and two files (F1, F2)
– Deadlock sequence

› P1 has access to F1 and also requires F2
› P2 has access to F2 and also requires F1

– Deadlock remains
› Until one program withdrawn or
› Until one program forcibly removed and file released

– Other programs requiring F1 or F2
› Put on hold for duration of situation

47

UNDERSTANDIN
G OPERATING
SYSTEMS,
SIXTH EDITION

Case 1: Deadlocks on File Requests

48

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 2: Deadlocks in Databases
› Two processes access and lock database records

› Locking
– Technique

› One user locks out all other users
› Users working with database

– Three locking levels
› Entire database for duration of request
› Subsection of database
› Individual record until request completed

49

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 2: Deadlocks in Databases
› Example: two processes (P1 and P2)

– Each needs to update two records (R1 and R2)
– Deadlock sequence

› P1 accesses R1 and locks it
› P2 accesses R2 and locks it
› P1 requests R2 but locked by P2
› P2 requests R1 but locked by P1

› Race between processes
– Results when locking not used
– Causes incorrect final version of data
– Depends on process execution order

50

UNDERSTANDIN
G OPERATING
SYSTEMS,
SIXTH EDITION

Case 2: Deadlocks in Databases

51

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 3: Deadlocks in Dedicated Device
Allocation
› Limited number of dedicated devices

› Example
– Two programs (P1, P2)

› Need two tape drives each
› Only two tape drives in system

– Deadlock sequence
› P1 requests tape drive 1 and gets it
› P2 requests tape drive 2 and gets it
› P1 requests tape drive 2 but blocked
› P2 requests tape drive 1 but blocked

52

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 4: Deadlocks in Multiple
Device Allocation
› Several processes request and hold dedicated devices

› Example
– Three programs (P1, P2, P3)
– Three dedicated devices (tape drive, printer, plotter)
– Deadlock sequence

› P1 requests and gets tape drive
› P2 requests and gets printer
› P3 requests and gets the plotter
› P1 requests printer but blocked
› P2 requests plotter but blocked
› P3 requests tape drive but blocked

53

UNDERSTANDIN
G OPERATING
SYSTEMS,
SIXTH EDITION

Case 4: Deadlocks in Multiple
Device Allocation

54

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 5: Deadlocks in Spooling
› Virtual device

– Dedicated device made sharable
– Example

› Printer: high-speed disk device between printer and CPU

› Spooling
– Process

› Disk accepts output from several users
› Acts as temporary storage for output
› Output resides in disk until printer accepts job data

55

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 5: Deadlocks in Spooling
› Deadlock sequence

– Printer needs all job output before printing begins
› Spooling system fills disk space area
› No one job has entire print output in spool area
› Results in partially completed output for all jobs
› Results in deadlock

56

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 6: Deadlocks in a Network
› No network protocols controlling network message flow

› Example
– Seven computers on network

› Each on different nodes
– Direction of arrows

› Indicates message flow
– Deadlock sequence

› All available buffer space fills

57

UNDERSTANDIN
G OPERATING
SYSTEMS,
SIXTH EDITION

Case 6: Deadlocks in a Network (cont'd.)

58

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Case 7: Deadlocks in Disk Sharing
› Competing processes send conflicting commands

– Scenario: disk access

› Example
– Two processes
– Each process waiting for I/O request

› One at cylinder 20 and one at cylinder 310
– Deadlock sequence

› Neither I/O request satisfied
› Device puts request on hold while attempting to fulfill other

request for each request
– Livelock results

59

UNDERSTANDIN
G OPERATING
SYSTEMS,
SIXTH EDITION

Case 7: Deadlocks in Disk Sharing (cont'd.)

60

A Deadlock Resulting from Competition
for Nonshareable Railroad Intersections

2014/8/29 61

Conditions for Deadlock
› Four conditions simultaneously occurring prior to

deadlock or livelock
– Mutual exclusion
– Resource holding
– No preemption
– Circular wait

› All needed by operating system
– Must recognize simultaneous occurrence of four conditions

› Resolving deadlock
– Removal of one condition

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION 62

› Mutual Exclusion: Resources shared such as read-only
files do not lead to deadlocks but resources, such as
printers and tape drives, requires exclusive access by a
single process.

› Hold and Wait: In this condition processes must be
prevented from holding one or more resources while
simultaneously waiting for one or more others.

› No Preemption: Preemption of process resource
allocations can avoid the condition of deadlocks, where
ever possible.

› Circular Wait: Circular wait can be avoided if we
number all resources, and require that processes request
resources only in strictly increasing(or decreasing) order.

Avoiding Deadlocks

2014/8/29 63

› Preemption: We can take a resource from one process
and give it to other. This will resolve the deadlock
situation, but sometimes it does causes problems.

› Rollback: In situations where deadlock is a real
possibility, the system can periodically make a record of
the state of each process and when deadlock occurs, roll
everything back to the last checkpoint, and restart, but
allocating resources differently so that deadlock does
not occur.

› Kill one or more processes: This is the simplest way, but
it works.

Handling Deadlocks

2014/8/29 64

UNDERSTANDING OPERATING SYSTEMS, SIXTH
EDITION

Starvation
› Job execution prevented

– Waiting for resources that never become available
– Results from conservative resource allocation

› Example
– “The dining philosophers” by Dijkstra

› Starvation avoidance
– Implement algorithm tracking how long each job waiting for

resources (aging)
– Block new jobs until starving jobs satisfied

65

› Attacks from outside:
– Problems

› Insecure passwords
› Sniffing software

– Counter measures
› Auditing software

› Attacks from within
– Problem: Unruly processes.
– Counter measures: Control process activities via privileged

modes and privileged instructions.

Security

2014/8/29 66

Introduction to Linux

2014/8/29 67

› What is Unix/Linux?

› History of Linux.

› Features Supported Under Linux.

› The future of Linux.

Overview

2014/8/29 68

› In 80’s, Microsoft’s DOS was the dominated OS for PC.
– Apple MAC was better, but expensive. (Some people’s pov)

› UNIX was much better, but much, much more
expensive. Only for minicomputer for commercial
applications.

› People was looking for a UNIX based system, which is
cheaper and can run on PC.

› Both DOS, MAC and UNIX were proprietary, i.e., the
source code of their kernel is protected.

› No modification is possible without paying high license
fees.

Before Linux

2014/8/29 69

70

Unix Family
› Linux
› System V Release 4 (SVR4), developed by AT&T (now

owned by the SCO Group);
› the 4.4 BSD release from the University of California at

Berkeley (4.4BSD);
› Digital Unix from Digital Equipment Corporation (now

Hewlett-Packard);
› AIX from IBM;
› HP-UX from Hewlett-Packard;
› Solaris from Sun Microsystems;
› Mac OS X from Apple Computer, Inc.

› Established in 1984 by Richard Stallman, who believes
that software should be free from restrictions against
copying or modification in order to make better and
efficient computer programs.

GNU Project

2014/8/29 71

GNU is a recursive acronym for “GNU's Not
Unix”
Aim at developing a complete Unix-like
operating system which is free for copying and
modification
Companies make their money by maintaining
and distributing the software, e.g. optimally
packaging the software with different tools
(Redhat, Slackware, Mandrake, SuSE, etc)
Stallman built the first free GNU C Compiler in
1991. But still, an OS was yet to be developed.

› A famous professor Andrew Tanenbaum developed
Minix, a simplified version of UNIX that runs on PC.
– Minix is for class teaching only.
– No intention for commercial use.

› In Sept 1991, Linus Torvalds, a second year student of
Computer Science at the University of Helsinki,
developed the preliminary kernel of Linux, known as
Linux version 0.0.1

Beginning of Linux

2014/8/29 72

PK!
› Message from Professor

Andrew Tanenbaum:
" I still maintain the point that
designing a monolithic kernel
in 1991 is a fundamental
error. Be thankful you are
not my student. You would
not get a high grade for such
a design :-)“

› Andrew Tanenbaum to
Linus Torvalds.

› Soon more than a
hundred people joined the
Linux camp.
– Then thousands.
– Then hundreds of

thousands.

› It was licensed under
GNU General Public
License, thus ensuring
that the source codes will
be free for all to copy,
study and to change.

2014/8/29 73

› Linux has been used for many computing platforms
– PC, Supercomputer, Switches, Routers, Handheld devices,

Micro devices, Name card computers…

› Not only character user interface but graphical user
interface is available.

› Commercial vendors moved in Linux itself to provide
freely distributed code.
– They make their money by compiling up various software and

gathering them in a distributable format.

Linux Today

2014/8/29 74

Linux has Many Distributions

2014/8/29 75

76

GNU (Linux) Operating System
Linux Kernel

+
system programs (e.g. compilers, loaders, linkers, and

shells)
+

system utilities (commands)
+

libraries
+

graphical desktops (e.g. X windows).

› Interact with the hardware components, servicing all
low-level programmable elements included in the
hardware platform.
– In a modern OS like Linux, the above functionality is provided

by the Linux kernel.
– A user program can not directly operate on a hardware.

› Provide an execution environment to the applications
that run on the computer system (the so-called user
programs).

Operating System Objectives

77

› In order to encourage wide dissemination of his OS,
Linus made the source code open to public.

› At the end of 1992 there were about a hundred Linux
developers. Next year there were 1000.
– The numbers multiplied every year.

Growing and Growing

2014/8/29 79

› Free software, as defined by the FSF (Free Software
Foundation), is a "matter of liberty, not price."

› To qualify as free software by FSF standards, you must
be able to:
– Run the program for any purpose you want to, rather than be

restricted in what you can use it for.
– View the program's source code.
– Study the program's source code and modify it if you need to.
– Share the program with others.
– Improve the program and release those improvements so that

others can use them.

Linux – Free Software

2014/8/29 80

› Linux supports a broad range of platforms and hardware.
– alpha

› Hewlett-Packard's Alpha workstations
– arm

› ARM processor-based computers and embedded devices
– cris

› "Code Reduced Instruction Set" CPUs used by Axis in its thin-
servers, such as web cameras or development boards

Hardware Dependency (1)

81

– i386
› IBM-compatible personal computers based on 80 x 86

microprocessors
– ia64

› Workstations based on Intel 64-bit Itanium microprocessor
– m68k

› Personal computers based on Motorola MC680 x 0
microprocessors

– mips
› Workstations based on MIPS microprocessors

– mips64
› Workstations based on 64-bit MIPS microprocessors

Hardware Dependency (2)

82

– parisc
› Workstations based on Hewlett Packard HP 9000 PA-RISC

microprocessors
– ppc

› Workstations based on Motorola-IBM PowerPC microprocessors
– s390

› 32-bit IBM ESA/390 and zSeries mainframes
– s390 x

› IBM 64-bit zSeries servers
– sh

› SuperH embedded computers developed jointly by Hitachi and
STMicroelectronics

– sparc
› Workstations based on Sun Microsystems SPARC microprocessors

– sparc64
› Workstations based on Sun Microsystems 64-bit Ultra SPARC

microprocessors

Hardware Dependency (3)

83

› There is a difference between free software and open-
source software.
– Both use the same license—the GPL.
– Free software helps users focus on freedom and ethics.
– Open-source software is related to the efficiencies gained by the

free-software approach to development.

Licenses that Govern Linux and Free and
Open-source Software

2014/8/29 84

› Shell interprets the command
and request service from kernel.

› Similar to DOS but DOS has
only one set of interface while
Linux can select different shell.
– Bourne Again shell (Bash), TC

shell (Tcsh), Z shell (Zsh)

› Different shell has similar but
different functionality.

› Bash is the default for Linux.
› Graphical user interface of

Linux is in fact an application
program work on the shell.

Linux Shells

2014/8/29 85

Kernel

Bash, Tcsh, Zsh

ls pwd
whoami

› When you log on the Linux OS using your username you are
automatically located in your home directory.

› The *Nix (Unix or Linux) file system is a hierarchical
directory structure

› The structure resembles an upside down tree.
› Directories are collections of files and other directories. The

structure is recursive with many levels.
› Every directory has a parent except for the root directory.
› Many directories have children directories.
› Unlike Windows, with multiple drives and multiple file

systems, a *Nix system only has ONE file system.
› The Linux Standard Base (LSB) specifies the structure of a

Linux file system.

Directory Tree

2014/8/29 86

Directory Tree

2014/8/29 87

› /bin: Important Linux commands available to the average user.

› /boot: The files necessary for the system to boot. Not all Linux
distributions use this one. Fedora does.

› /dev: All device drivers. Device drivers are the files that your Linux
system uses to talk to your hardware. For example, there's a file in
the /dev directory for your particular make and model of monitor,
and all of your Linux computer's communications with the monitor
go through that file.

› /etc: System configuration files.

› /home: Every user except root gets her own folder in here, named
for her login account. So, the user who logs in with linda has the
directory /home/linda, where all of her personal files are kept.

› /lib: System libraries. Libraries are just bunches of programming
code that the programs on your system use to get things done.

Some Important Subdirectories

2014/8/29 88

› /mnt: Mount points. When you temporarily load the contents of a
CD-ROM or USB drive, you typically use a special name under
/mnt. For example, many distributions (including Fedora) come, by
default, with the directory /mnt/cdrom, which is where your CD-
ROM drive's contents are made accessible.

› /root: The root user's home directory.
› /sbin: Essential commands that are only for the system

administrator.
› /tmp: Temporary files and storage space. Don't put anything in here

that you want to keep. Most Linux distributions (including Fedora)
are set up to delete any file that's been in this directory longer than
three days.

› /usr: Programs and data that can be shared across many systems
and don't need to be changed.

› /var: Data that changes constantly (log files that contain
information about what's happening on your system, data on its
way to the printer, and so on).

Some Important Subdirectories

2014/8/29 89

› This is where you put your own stuff.
– Linux is a multiuser, multiprocessing machine.
– Resource is shared among all.

Home Directory

2014/8/29 90

› Labs will be conducted after midterm.

More Linux

2014/8/29 91

	Introduction to Computer Science
	Chapter 3: Operating Systems
	投影片編號 3
	Examples of Operating Systems
	Smartphone Operating Systems
	Functions of Operating Systems
	History of Operating Systems
	History of Operating Systems
	Functions of O.S
	Memory Management
	Processor management
	Device management
	File management
	Other activities
	Batch Processing
	Batch Processing
	Interactive Processing
	Multitasking
	Multiprogramming
	Multiprogramming
	Multitasking
	Preemptive vs Non-preemptive
	Events of context switching
	Example: OMP
	Types of Software
	Software Classification
	Operating System Components
	The UI Acts as an Intermediary Between Users and the OS Kernel
	File Manager
	Memory Manager
	Virtual memory systems
	Shared library using virtual memory
	Shared page conflicts
	Getting it Started (Bootstrapping)
	Coordinating the Machine’s Activities
	Processes
	Process Administration
	Time-sharing Between Process A and Process B
	Handling Competition for Resources
	Parallelism vs Concurrency
	Parallelism vs Concurrency
	Deadlock
	Deadlock
	Deadlock
	Seven Cases of Deadlock
	Case 1: Deadlocks on File Requests
	Case 1: Deadlocks on File Requests
	Case 2: Deadlocks in Databases
	Case 2: Deadlocks in Databases
	Case 2: Deadlocks in Databases
	Case 3: Deadlocks in Dedicated Device Allocation
	Case 4: Deadlocks in Multiple� Device Allocation
	Case 4: Deadlocks in Multiple� Device Allocation
	Case 5: Deadlocks in Spooling
	Case 5: Deadlocks in Spooling
	Case 6: Deadlocks in a Network
	Case 6: Deadlocks in a Network (cont'd.)
	Case 7: Deadlocks in Disk Sharing
	Case 7: Deadlocks in Disk Sharing (cont'd.)
	A Deadlock Resulting from Competition for Nonshareable Railroad Intersections
	Conditions for Deadlock
	Avoiding Deadlocks
	Handling Deadlocks
	Starvation
	Security
	Introduction to Linux
	Overview
	Before Linux
	Unix Family
	GNU Project
	Beginning of Linux
	PK!
	Linux Today
	Linux has Many Distributions
	GNU (Linux) Operating System
	Operating System Objectives
	Growing and Growing
	Linux – Free Software
	Hardware Dependency (1)
	Hardware Dependency (2)
	Hardware Dependency (3)
	Licenses that Govern Linux and Free and Open-source Software
	Linux Shells
	Directory Tree
	Directory Tree
	Some Important Subdirectories
	Some Important Subdirectories
	Home Directory
	More Linux

