Introduction to Computer Science

William Hsu

Advanced Computation Laboratory o

Department of Computer Science and Engineering _
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

Chapter 2: Data Manipulation

\

7V "
The succesior to - Intel s Lewswell CSCU tech /l('i/(f”, Broaduwell ", has been revealed
and Shown working here al the - Intel Devels per Feram in G/{m g%;mm)((/ The ey i 5

budlt wiing @ whale new production process that shrinks -

I dnm. That is ling.

.,,(l)//’(// 5 P transistors dewn le

v

2.1 Computer Architecture

v

2.2 Machine Language

v

2.3 Program Execution

v

2.4 Arithmetic/Logic Instructions

v

2.5 Communicating with Other
Devices

v

2.6 Program Data Manipulation
2.7 Other Architectures

v

Computer Architecture

> Central Processing Unit (CPU) or processor
— Arithmetic/Logic unit versus Control unit.

— Registers p—
> General purpose. | (intel')
> Special purpose. g

Wil Core”™ (7.

AMD’s world #

1 5GHz CPU.

2014/8/29 4

CPU and Main Memory Connected via a
Bus

Central processing unit Main memory

Arithmetic/logic
unit

2014/8/29 5

Computer Architecture

>

Bus.

> Motherboard.

Aundio chip
|

PC| extension slots

CMOS
bﬂﬁery

AGP

Input-outpet conhectors

Chipset (1)

)

3

[
il
Processor power 5upp|1_|r cohhactor o

RAM mnnecfms

N 7
Jumpers Disk driveand ﬂoppy drive cohhectors

35& & h ECVUEF Sﬂp‘Ply

2014/8/29

Northbridge removed

INTEL" 2390 CHIPSET BLOCK DIAGRAM

8" Gen
Intel® Core™
Processors

Intel® UHD Graphics

8 Gbfs each x 1

Intel® High Definition Audio’

®
Inzehli izfo Intel” Rapid Storage
P Technology with RAID!
Intel® Rapid Storage

Technology for PCI
Express* Storage'

Intel® ME Firr

Platform Trust

Intel” Wireless-AC Adapter
Uptiona

xtreme Tuning

2014/8/29 7

IO Bridges

> Northbridge 1s connected
directly to the CPU via
the (FSB)

— Responsible for tasks that
require the highest
performance.

> , also known
as I/O controller hub.

2014/8/29

Graphics
card slot

High-speed
rapscs ins
(AGP or PCT
Express)

P{] Slots

CPL

— | o=l
& M
Chipset

[memory
controller hub)

s

(/O controller
hub)

triernai

Northbridge

Southbridge

e

| 0]=
5474
(155

s

Flash ROM
(BIOS)

Super |/O

Part

e

Onboard
graphics
controller

(o)
s

https://en.wikipedia.org/wiki/Frontside_bus
https://en.wikipedia.org/wiki/Southbridge_(computing)

Block diagrams

CPU Il otdtor Fertowm CPT Cache
CPLU and lenreld
Cache level 1
roon-slde
Graphics —_
cand slot a_ s Syst,em
(hipset
DRAN

High-speed e
Papics b N o Bridge

{AGH or BCH MNorthbridge e NV

- 7| memory

Express)
[memory ﬁ
controller hub)
PCI bus
l l
g’:’“‘. PCI {} PCI
e . : dewrice dewrice
. SR South Brid,
Southbridge graphics USE s ¥ :
(/0 controller ontroller : L Y

- = | IS4 bus |
G W Super /O EI0F ROM Super 10
_ Foppy drire,
t Parallel port,
Flash ROM / ¢ Serial port

(BIOS)

2014/8/29 9

Stored Program Concept

> A program can be encoded as bit patterns and stored in
main memory.

> From there, the CPU can then extract the instructions
and execute them. In turn, the program to be executed
can be altered easily.

2014/8/29 10

Terminology

> Machine instruction: An instruction (or command)
encoded as a bit pattern recognizable by the CPU.

> Machine language: The set of all instructions
recognized by a machine.

2014/8/29 11

Machine Language Philosophies

» Reduced Instruction Set Computing (RISC)
— Few, simple, efficient, and fast instructions.
— Examples: PowerPC from Apple/IBM/Motorola and ARM.

> Complex Instruction Set Computing (CISC)
— Many, convenient, and powerful instructions.
— Example: Intel.

2014/8/29 12

CISC vs RISC
> CISC

Has more complex
hardware.

More compact software
code.

Takes more cycles per
Instruction.

Can use less RAM as no
need to store intermediate
results.

2014/8/29

> RISC

Has simpler hardware.

More complicated software
code.

Takes one cycle per
Iinstruction.

Can use more RAM to
handle intermediate results.

13

Machine Instruction Types

Data Transfer: copy data
from one location to
another.

- (e.g. LOAD, STORE)

Arithmetic/Logic: use
existing bit patterns to
compute a new bit
patterns.

~ (e.g. +, -, *,/, AND, OR,
SHIFT, ROTATE)

Control: direct the

execution of the program.

- (e.g. JUMP, BRANCH)

2014/8/29

edit: C:\emuBOB6\MySou \ReverseStringInMemory.asm

file edt bookmarks assembler emulator

math asciicodes help

Dﬁv"i?z,ﬂ.
save

new open amples

compile emulate | calculstor conwvertor | options

31 DATH SEGHENT
STR1 DB "MAHESHS"

33 STR2 DB ? DUP (e

>
A4 M5GL DB 1@.13,.°'STORED STRING IN MEMORY I§ = &'
a5 M5G2 DB 18.13,°'REVERSE STRING IS : §°

@5 DATA ENDS

a7

@2 DISPLAY MACRO MSG
ag MOU AH.9

14
15 GODE SEGMENT

ASSUME CS:CODE.DS:DATA

17 START :
1:

8 MOU AX.DATA
19 MOU DS.AX

28

21 DISPLAY MSG1
28

%i DISPLAY STR1
25 LEA SI,.S8TR2
26 LEA DI,.STR1
27 ADD DI.5

28

a7 MOU CK.6

38 REUVERSE:

31 MOU AL,ILDI]
32 MOU [SI1.AL
33 INC 81

34 DEC DI

35 LOOF REVERSE
36

gg DISPLAY MSG2
3 DISPLAY STR2
48

41 MOU AH,4CH
a3 INT 21H

43 GODE ENDS
44 END START
ah

drag a file here to open

Registers 8086

Type Register Name of the
ES Extra Segment e Keglies
(] Code Segment
S8 Stack Segment General 16 bit AX, BX, CX, DX
DS Data Segment purpose
IP Instruction Pointer "“9'= 8 bit AL, AH, BL, BH,
CL, CH, DL, DH
AX AH AL Accumulator
BX| BH BL Base Register Folnter LE LI | BRy R
cxX|_cH CL Count Register 2= '®
DX| DH DL Data Register Indexed 16 bit SI, DI
) Stack Pointer registers
BP Base Pointer
Instruction 16 bit IP
S| Source Index Pointer
DI Destination Index
FLAGS Segment 16 bit CS, DS, SS,
registers

Flags 16 bit Flag register

2014/8/29 15

Registers (core 1X, 64bit)

‘ 64-hit register Lower 32 bits Lower 16 bits Lower 8 bits

rax eax ax al
rbax ebx b bl
FOX ecx X cl
rdx edx dx dl
rsi esi si =il
rdi edi di dil
rbp ebp bp bpl
rsp esp sp spl
r8 réd réw réb
ra rod row rob
rio riod ridw riohb
ril riid rllw rilb
ri2 ri2d rFl2w r12b
ri3 ri3d ri3w ri3b
ri4 ri4ad rldw ridb
rl5 ri5d rFl5w r15b

2014/8/29 16

Adding Values Stored in Memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

2014/8/29 17

Dividing Values Stored in Memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

2014/8/29 18

The Architecture of the Machine Described

in Appendix C

Central processing unit

Registers
1 0x0 Program counter
[Ox1
[0x2 _ _
Instruction register
[OxF

Main memory

Bus

2014/8/29

Address

0x00

0x01

0x02

0x03

OxFF

Cells

19

Parts of a Machine Instruction

> Op-code: Specifies which operation to execute.

> Operand: Gives more detailed information about the
operation.

— Interpretation of operand varies depending on op-code.

2014/8/29 20

The Composition of an Instruction for the
Machine in Appendix C

Op-code Operand
| |

| | | |
- - - 0111 Actual bit pattern (16 bits)
| | | |

0x3 0x5 0xA 0x7 Hexadecimal form (4 digits)

2014/8/29 21

Instruction ~|: 3

/

Op-code 3 means

to store the contents
of a registerin a
memory cell.

Decoding the Instruction 35A7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

2014/8/29 22

An Encoded Version of the Instructions in
Figure 2.2

Encoded
instructions Translation
0x156C Load register 0x5 with the bit pattern
found in the memory cell at
address 0x6C.
0x166D Load register 0x6 with the bit pattern
found in the memory cell at
address 0x6D.
0x5056 Add the contents of register 0x5 and
0x6 as though they were two's
complement representation and
leave the resultin register 0x0.
0x306E Store the contents of register 0x0
in the memory cell at address Ox6E.
0xC000 Halt.

2014/8/29 23

Program Execution

> Controlled by two special-purpose registers:
— Program counter: address of next instruction.
— Instruction register: current instruction.

> Machine Cycle

— Fetch 1. Retrieve the next

instruction from

- DCCOde Lnetrlrwlorv(asindicated \ 2. Decode the bit pattern
Lt i in the instruction register.
counter) and then

- Execute increment the

program counter.

— (Store)

3. Perform the action
required by the
instruction in the
instruction register.

2014/8/29 24

Decoding the Instruction B258

Instruction ~|:- - -0x8
/ I \ |

Op-code B means to

change the value of This part of the operand is the
the program counter address to be placed in the
If the contents of the program counter.

Indicated register is
the same as thatin
register 0.

This part of the operand identifies
the register to be compared to
register 0.

2014/8/29 25

CPU ‘

Program counter contains
address of first instructions.

Main memory

The Program from Figure 2.7 Stored in
. Main Memory Ready for Execution

Registers
0x0 [

0x1 [

0x2 [

OxF [

Program counter

O0xAO

Instruction register

Bus

2014/8/29

Address

OxAO

OxA1
OxA2
OxA3

OxA4

OxAS5
OxA6
OxA7

OxA8
OxA9

Cells

— Programis
stored in
main memory
beginning at
address 0xAO.

26

Performing the Fetch Step of the Machine
. Cycle

CPU Main memory
Program counter Address Cells
0xAO

Bus 0XxA0 |_-
0xA1 |_-

Instruction register
0x156C 0xA2
0XxA3

a. At the beginning of the fetch step, the instruction starting at address 0xAQ is
retrieved from memory and placed in the instruction register.

2014/8/29 27

Performing the Fetch Step of the Machine
Cycle (continued)

CPU Main memory
Program counter Address Cells
0xA2

Bus 0xAO
1
= OxA1
Instruction register
0x156C OxA2 116 |
0xA3 6D |

b. Then the program counter is incremented so that it points to the next instruction.

2014/8/29 28

. How about CISC architecture

2] [wwyhsu@Citadel:~ $> objdump -d a.out

file format elf64-x86-64

isassembly of section .init:

)0O4083C8 <_initd:
48 83 ec ©
48 8b @5 25 6c 20 @0 0x200c25(%rip) ,%rax # 600ff8 <_DYNAMIC+8x1de>
48 85 c@ orax,krax
74 85 J¢ PE3dd <_init+@x15>
3 43 20 00 o8 allg 4008420 <_ libc_start_main@plt+0x10>
3 83 c4 88 ad $0x8,%rsp

29

Endian Order

> Depending on which computing system you use, you
will have to consider the byte order in which multi-byte
numbers are stored, particularly when you are writing
those numbers to a file.

» The two orders are called Little Endian and Big Endian.

> See:
https://hunt8r.gitbooks.10/notes/content/topics/endiannes
s.html

30

Little Endian

v

v

v

v

v

v

Little Endian means that the low-order byte of the number 1s stored in
memory at the lowest address, and the high-order byte at the highest
address. (The little end comes first.)

For example, a 4 byte long int

Byte3 Byte2 Bytel Byte0

will be arranged in memory as follows:

Base Address+0 ByteO

Base Address+1 Bytel

Base Address+2 Byte2

Base Address+3 Byte3

Intel processors (those used in PC's) use "Little Endian" byte order.
Intel CPU's

DEC Alphas

Domain Names (www.google.com)

hexdump (because the dumping program is unable to know what kind of data it is
dumping, the only orientation it can observe is monotonically increasing addresses.)

31

Little Endian

32-bit integer 8bit - oD-8C-68-9A
16bit- 6C0D - GAOB

OAOBOCOD Memory
MSB LSB lower |t
——— a: 0D
> a+1:/10C
> a+2:|0B
> a+3:10A /
Littlke-endian ~ higher [

Right to Left

Big Endian

> Big Endian means that the high-order byte of the
number 1s stored in memory at the lowest address, and
the low-order byte at the highest address. (The big end
comes first.)

Base Address+0 Byte3
Base Address+1 Byte2
Base Address+2 Bytel
Base Address+3 Byte0

> Motorola processors (those used in Mac's) use "Big
Endian" byte order.

> IBM's 370 mainframes
> TCP/IP

33

Big Endian

Bbit - OA-08-6C-6D .
16bit- oage - gcep 52 Dil integer

Memory OAOBOCOD

luw;>¥ E

a.

0A

a+1:

0B

at2:

0C

at+3:

0D

higher

M5B
e

-~

-~

il
Big-endian
Left to Right

2014/8/29

LSB

34

Arithmetic/Logic Operations

> Logic: AND, OR, XOR
— Masking

> Rotate and Shift: circular shift, logical shift, arithmetic
shift

> Arithmetic: add, subtract, multiply, divide

— Precise action depends on how the values are encoded (two’s
complement versus floating-point).

2014/8/29 35

Rotating the Bit Pattern 65y, (hexadecimal)
One Bit to the Right

0 1 1 0 0 1 0 @ The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

1 0 1 1 0 0 1 O The final bit pattern

2014/8/29 36

Communicating with Other Devices

> Controller: An intermediary apparatus that handles
communication between the computer and a device.

— Specialized controllers for each type of device
— General purpose controllers (USB and FireWire)

> Port: The point at which a device connects to a
computer

> Memory-mapped I/O: CPU communicates with
peripheral devices as though they were memory cells

2014/8/29

37

Controllers Attached to a Machine’s Bus

CPU

A Conceptual Representation of Memory-
Mapped 1I/O

CPU

2014/8/29 39

Memory-Mapped 1I/0

MVIDIA GeForce GTX 1660 - A s
—# EREX =4=En =4 2 EF
!_ MVIDIA GeForce GTX 1660
EEZEER:

EEEL L 6

i EiEEEE 0000000043 000000 - 0O000000ASFFFFFF

EEBSE 0000000030000000 - D00000009FFFFFFF 5

T R T ettt N

b

Intel(R) Ethernet Connection (7)) 1218-V - [AE
—5 EE EuEs =ds=s =4 =EE =Fs8

. Intel(R) Ethernet Connection (7) 1219V

EESTER):
EEED ELa
¥ EBsE 00000000A4300000 - D0000D00A43 1 FFFF
¥ rRQ OxFFFFFFED (-19)

2014/8/29

40

. Memory banking technology - Nintendo

Communicating with Other Devices
(continued)

> Direct memory access (DMA): Main memory access
by a controller over the bus.

> Von Neumann Bottleneck: Insufficient bus speed
impedes performance.

> Handshaking: The process of coordinating the transfer
of data between components .

2014/8/29 43

Communicating with Other Devices
(continued)

> Parallel Communication: Several communication
paths transfer bits simultaneously.

> Serial Communication: Bits are transferred one after
the other over a single communication path.

2014/8/29

44

Communicating with Other Devices
. (continued)

> Universal serial bus (USB) i (=
> Thunderbolt

-

m ¢

Type-C IUNDERBOLT.

Hidd FOWERCOHD HFIEWLE #USAY WHUNDESHNTZ EHESEE WA

2014/8/29 45

Transfer speed: USB vs Thunderbolt

40 Gbps

‘) THUNDERBOLT.

USB 2.0 USB 3.0 USB 3.1 Thunderbolt Thunderbolt 2 Thunderbolt 3
(Includes USB 3.1)

2014/8/29 46

Why serial instead of parallel?

> Signal frequency cause synchronization problems.

> Crosstalk.

2014/8/29 47

Anything faster?

> InfiniBand (abbreviated IB) 1s a computer-networking
communications standard used in high-performance
computing that features very high throughput and very
low latency.

— Data interconnection, switches, storage — server connections.

2014/8/29 48

https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Latency_(engineering)

Infiniband speed

10,000
v
=
O
§ 1,000
-1—:’, ’
o
=
b
Q
o
£
5
S 100
©
| =
C
as]
=
£
-
10

4x Link Bandwidth

FDR EDR HDR
56 Gb/s 100 Gb/s 200 Gb/s

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2014/8/29

~ INFINIBAND"

TRADE ASSOCIATION

©2015 InfiniBand® Trade Association

49

Serial attached SCSI

> Serial Attached SCSI (SAS) is a point-to-point serial
protocol that moves data to and from computer-storage
devices such as hard drives and tape drives.

> Replaces the older Parallel SCSI (Parallel Small
Computer System Interface ("scuzzy") bus technology
in mid 1980s.

> SAS offers optional compatibility with Serial ATA
(SATA), versions 2 and later.

— This allows the connection of SATA drives to most SAS
backplanes or controllers.

— The reverse, connecting SAS drives to SATA backplanes, is not

possible

2014/8/29

50

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Hard_drives
https://en.wikipedia.org/wiki/Tape_drives
https://en.wikipedia.org/wiki/Parallel_SCSI
https://en.wikipedia.org/wiki/Serial_ATA
https://en.wikipedia.org/wiki/Backplanes

External SAS connectors

SFF-8482

SFF-8643 SFF-8470 SFF 8086 SFF-8088
SFF-8087

2014/8/29 51

Serial attached SCSI

MBE per

sec. SAN Fabric Throughput Comparison

2500

2000

1500

1213 1200

800

600
400
300
200
100 100 .
0 _J T - T T T T T T T

1Gbps Fibre 1GbE 2Gbps Fibre 3Gbps SAS 4Gbps Fibre 6Gbps SAS 8Gpbs Fibre 10GbE 12GbpsSAS 16Gbps
Channel Ethernet Channel Interface Channel Interface Channel Ethernet Interface Fibre
Channel

M 1GbpsFibre Channel
W 1GbE Ethernet

M 2GbpsFibre Channel
M 3Gbps SAS Interface
M 4Ghps Fibre Channel
M 6Ghps SAS Interface
M 8Gpbs Fibre Channel
M 10GbE Ethernet

M 12Gbps SAS Interface

M 16Gbps Fibre Channel

2014/8/29

52

Data Communication Rates

> Measurement units:
— Bps: Bits per second
— Kbps: Kilo-bps (1,000 bps)
— Mbps: Mega-bps (1,000,000 bps)
— Gbps: Giga-bps (1,000,000,000 bps)

> Bandwidth: Maximum available rate.

2014/8/29 53

Communication Speed over the Years

Technology $ Rate $ Year #

FireWire (IEEE 1394) 200 196.608 Mbit/s =~ 24 576 MB/5 | 1995
FireWire (IEEE 1394) 400 393.216 Mbit/s | 49.152 MB/5 | 1995
LUSB high speed 480 Mbit/s 60 MB/s | 2000
FireWire (IEEE 1394b) 80006] 786.432 Mbit/s | 98.304 MB/s | 2002
Fibre Channel 1 Gb SCSI 1 062.5 Mbit/s 100 MB/s

FireWire (IEEE 1394b) 160036 1.573 Gbit/s 196.6 MB/s | 2007
Fibre Channel 2 Gb SCSI 2125 Mbit/s 200 MB/s

eSATA (SATA 300) 3 Gbit/s 375 MB/s | 2004
USB SuperSpeed 5 Ghit/s 625 MB/s | 2010
eSATA (SATA 600) 6 Ghit/s 750 MB/s | 2011
USB SuperSpeed+ 10 Gbit/s 1250 MB/s | 2013
Thunderbolt 2 x 10 Gbit/s | 2 x 1250 MB/s | 2011
External PCI Express 2.0 x4 18 Ghit/s 2000 MB/s

Thunderbolt 2 20 Gbit/s 2500 MB/s | 2013
External PCI Express 2.0 x8 32 Gbit/s 4000 MB/s

Thunderbolt 3 40 Ghit/s 5000 MB/s | 2015
External PCI Express 2.0 x16 64 Gbit/s 8000 MB/s

2014/8/29

54

Standards

TRS TRS XLR Microphone Headphone TOSLINK Optical VGA DFP HDMI

micro-jack Neutrik Mini Jack Mini Jack Audio

w 00000©@ o @ © © c

SRR

?

| |

N ONONCORONONRCRONORONONORN =) @0 e
" e m g m
B 1 - e
-Fime i
1 | |

DVI-1 {Single Link)

et ettt - -
DVI-D (Single Link)

TV
I - -

DVI-A Port

dHF

2014/8/29 55

Programming Data Manipulation

> Programing languages shields users from details of the
machine:

— A single Python statement might map to one, tens, or hundreds
of machine instructions.

— Programmer does not need to know if the processor is RISC or
CISC.

— Assigning variables surely involves LOAD, STORE, and
MOVE op-codes.

2014/8/29 56

Example Marathon Training Data

Other Architectures

> Technologies to increase throughput:
— Pipelining: Overlap steps of the machine cycle.
— Superscalar: Multiple instructions per cycle.
— Parallel Processing: Use multiple processors simultaneously

> SISD: No parallel processing

> MIMD: Different programs, different data
> SIMD: Same program, different data

> MISD?

2014/8/29 65

Parallel Processing

> MPMD

SISD MISD

SIMD MIMD

SPMD

2014/8/29 66

Pipelining

Program O]
executiond 2 4 & a2 10 12 14 16 18

orcerd Time T T T T T T T T T
(in instructions)

w$1, 10060) [V | oA | PEeD fge

¥

&
¥

Ins’trucﬁun[]ﬁeg ALU Datall Reg

Iw $2, 200($0) 8 ns fetch ACCESS

F 3

lw $3, 300(%0) 8 ns Ins;ﬁinn[]

2 ns

Program [
execution 2 4 & a 10 12 14

order] Time T T T T T T T
(in instructions)

lw$1, 100(F0)

¥

-]

Instruction Reg AL Datal Reg

fetch BCOEFS

Instruction [Datal
fetch Reg ALU access Reg

«—
Iw $2, 200($0) 2ns

o i
Iw $3, 300($0) 2ns | "Emecen coevis

-
.|

2014/8/29 67

Data Hazards

Forwarding to Avoid Data Hazard

® L & L
Time (clock cycles)

Necessary?

I

n|add rl,r2,r3 [

s

r

r- | sub rd4,rl,r3

o

; and r6,rl,r7

e

r
or r8,rl,r9
xor rl0,rl,rll

2014/8/29 68

5 State stalls

I1: 1000

12: 1004

13: 1008
14: 1012
I5: 2008

E Fetch

ADDRL KRS SUEDIB0 K MDD
BEQ R3, 2000 F D X .M W

SUB R3, R5, R6 w> D > nop nop nop
DIV R7, R8, R9 ~ F pmop nop nop nop

MUL R, RS, R9 CE D X IMDwW
E Decode E Execute ,Memory i Write Back

2014/8/29 69

Branch prediction

Time
112|3|4|5/6|7/ 89
a=0 FID|E |S
a+=1 F |DI|E|S
if (a < 10) F|D|E |S
a+=2 F |D E|S
a+=3 F D E|S

2014/8/29 70

WB
WB

MEM

WB

MEM

WB

Superscalar
IF | ID | EX |MEM
IF | ID | EX |MEM
,- IF | ID | EX
t IF | ID | EX
_" IF | ID
IF | ID
IF
IF

2014/8/29

EX

MEM

WB

EX

MEM

WB

1D

EX

MEM

WB

1D

EX

MEM

WB

71

